Graduações em Álgebras Matriciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449 |
Resumo: | O tema central da presente dissertação é o estudo das graduações de um grupo G nas álgebras UTn(F) e UT(d1; : : : ; dm). Inicialmente, no Capítulo 2, supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, provamos que qualquer graduação em UTn(F) é elementar (a menos de automorfismo G-graduado). Ainda no Capítulo 2, sem fazer qualquer suposição sobre o grupo G e o corpo F, chegamos à mesma conclusão. Para tanto, foi necessário utilizar técnicas mais sutis na demonstração. No Capítulo 3, novamente supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, classificamos as G-graduações da F-álgebra UT(d1; : : : ; dm). Veremos que, neste caso, existe uma decomposição d1 = tp1; : : : ; dm = tpm tal que UT(d1; : : : ; dm) é isomorfa, como álgebra G-graduada, ao produto tensorial Mt(F) UT(p1; : : : ; pm), onde Mt(F) tem uma G-graduação na e UT(p1; : : : ; pm) tem uma G-graduação elementar. |
id |
UFCG_3425c1c08d8a07e94c651fbf9adcf11f |
---|---|
oai_identifier_str |
oai:localhost:riufcg/2449 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Graduações em Álgebras MatriciaisÁlgebras AssociativasÁlgebra GraduadasÁlgebras MatriciaisG-graduação elementarRadical de JacobsonRepresentações LinearesAssociative AlgebrasGraduated AlgebraMatrix AlgebrasG-elementary graduationJacobson's RadicalLinear RepresentationsÁlgebraMatemáticaO tema central da presente dissertação é o estudo das graduações de um grupo G nas álgebras UTn(F) e UT(d1; : : : ; dm). Inicialmente, no Capítulo 2, supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, provamos que qualquer graduação em UTn(F) é elementar (a menos de automorfismo G-graduado). Ainda no Capítulo 2, sem fazer qualquer suposição sobre o grupo G e o corpo F, chegamos à mesma conclusão. Para tanto, foi necessário utilizar técnicas mais sutis na demonstração. No Capítulo 3, novamente supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, classificamos as G-graduações da F-álgebra UT(d1; : : : ; dm). Veremos que, neste caso, existe uma decomposição d1 = tp1; : : : ; dm = tpm tal que UT(d1; : : : ; dm) é isomorfa, como álgebra G-graduada, ao produto tensorial Mt(F) UT(p1; : : : ; pm), onde Mt(F) tem uma G-graduação na e UT(p1; : : : ; pm) tem uma G-graduação elementar.The central theme of this dissertation is the study the of the gradings of a group G in the algebras UTn(F) and UT(d1; : : : ; dm). Initially, in Chapter 2, assuming G a finite abelian group and F an algebraically closed field and of characteristic zero, we prove that any grading in UTn(F) is elementary (up to graded isomorphism). Still in Chapter 2, without making any assumption about the group G and the field F, we obtain the same conclusion. To prove this was necessary to use more subtle techniques in demonstration. In Chapter 3, again assuming G a finite abelian group and F an algebraically closed field of characteristic zero, we classify the gradings of the algebra UT(d1; : : : ; dm). We will see that there is a decomposition d1 = tp1; : : : ; dm = tpm such that UT(d1; :::; dm) is isomorphic, as graded algebra, to the tensor product Mt(F) UT(p1; : : : ; pm), where Mt(F) has a fine grading and UT(p1; : : : ; pm) has a elementary grading.CapesUniversidade Federal de Campina GrandeBrasilCentro de Ciências e Tecnologia - CCTPÓS-GRADUAÇÃO EM MATEMÁTICAUFCGSILVA, Diogo Diniz Pereira da Silva e.SILVA, D. D. P. S. E.http://lattes.cnpq.br/5154042218439017MELLO, Thiago Castilho de.BRANDÃO JÚNIOR, Antônio Pereira.GUIMARÃES, Alan de Araújo.2014-122019-01-03T10:36:17Z2019-01-032019-01-03T10:36:17Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449GUIMARÃES, A. de A. Graduações em Álgebras Matriciais. 2014. 93 f. Dissertação (Mestrado em Matemática) – Programa Pós-Graduação em Matemática, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-11-29T16:46:52Zoai:localhost:riufcg/2449Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-11-29T16:46:52Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Graduações em Álgebras Matriciais |
title |
Graduações em Álgebras Matriciais |
spellingShingle |
Graduações em Álgebras Matriciais GUIMARÃES, Alan de Araújo. Álgebras Associativas Álgebra Graduadas Álgebras Matriciais G-graduação elementar Radical de Jacobson Representações Lineares Associative Algebras Graduated Algebra Matrix Algebras G-elementary graduation Jacobson's Radical Linear Representations Álgebra Matemática |
title_short |
Graduações em Álgebras Matriciais |
title_full |
Graduações em Álgebras Matriciais |
title_fullStr |
Graduações em Álgebras Matriciais |
title_full_unstemmed |
Graduações em Álgebras Matriciais |
title_sort |
Graduações em Álgebras Matriciais |
author |
GUIMARÃES, Alan de Araújo. |
author_facet |
GUIMARÃES, Alan de Araújo. |
author_role |
author |
dc.contributor.none.fl_str_mv |
SILVA, Diogo Diniz Pereira da Silva e. SILVA, D. D. P. S. E. http://lattes.cnpq.br/5154042218439017 MELLO, Thiago Castilho de. BRANDÃO JÚNIOR, Antônio Pereira. |
dc.contributor.author.fl_str_mv |
GUIMARÃES, Alan de Araújo. |
dc.subject.por.fl_str_mv |
Álgebras Associativas Álgebra Graduadas Álgebras Matriciais G-graduação elementar Radical de Jacobson Representações Lineares Associative Algebras Graduated Algebra Matrix Algebras G-elementary graduation Jacobson's Radical Linear Representations Álgebra Matemática |
topic |
Álgebras Associativas Álgebra Graduadas Álgebras Matriciais G-graduação elementar Radical de Jacobson Representações Lineares Associative Algebras Graduated Algebra Matrix Algebras G-elementary graduation Jacobson's Radical Linear Representations Álgebra Matemática |
description |
O tema central da presente dissertação é o estudo das graduações de um grupo G nas álgebras UTn(F) e UT(d1; : : : ; dm). Inicialmente, no Capítulo 2, supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, provamos que qualquer graduação em UTn(F) é elementar (a menos de automorfismo G-graduado). Ainda no Capítulo 2, sem fazer qualquer suposição sobre o grupo G e o corpo F, chegamos à mesma conclusão. Para tanto, foi necessário utilizar técnicas mais sutis na demonstração. No Capítulo 3, novamente supondo o grupo G abeliano e finito e o corpo F algebricamente fechado e de característica zero, classificamos as G-graduações da F-álgebra UT(d1; : : : ; dm). Veremos que, neste caso, existe uma decomposição d1 = tp1; : : : ; dm = tpm tal que UT(d1; : : : ; dm) é isomorfa, como álgebra G-graduada, ao produto tensorial Mt(F) UT(p1; : : : ; pm), onde Mt(F) tem uma G-graduação na e UT(p1; : : : ; pm) tem uma G-graduação elementar. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 2019-01-03T10:36:17Z 2019-01-03 2019-01-03T10:36:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449 GUIMARÃES, A. de A. Graduações em Álgebras Matriciais. 2014. 93 f. Dissertação (Mestrado em Matemática) – Programa Pós-Graduação em Matemática, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449 |
identifier_str_mv |
GUIMARÃES, A. de A. Graduações em Álgebras Matriciais. 2014. 93 f. Dissertação (Mestrado em Matemática) – Programa Pós-Graduação em Matemática, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Paraíba, Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2449 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744363968790528 |