Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20614 |
Resumo: | Este trabalho propõe uma metodologia de gestão técnica de isoladores poliméricos baseada na correlação entre atributos, obtidos pela detecção da radiação infravermelha, radiação luminosa ultravioleta e emissão acústica ultrassônica. Para tanto, 60 isoladores de classe 138 kV retirados de operação foram utilizados em ensaios em laboratório para inspeção e obtenção dos atributos. Os atributos foram analisados inicialmente por meio de gráficos de boxplot com o objetivo da identificação e retirada dos outliers. Na sequência o algoritmo k-means foi empregado na divisão do banco de dados com o objetivo de dividir os isoladores em três grupos com diferentes padrões de operação. Estes grupos foram utilizados como referência na criação de um modelo de classificação por redes neurais artificiais do estado operacional de isoladores que possibilitou a classificação de amostras em que não se conhece o estado operacional. A metodologia desenvolvida se apresentou efetiva na classificação do estado operacional de isoladores poliméricos de forma não invasiva, por meio da aplicação em conjunto de técnicas de inspeção associadas a algoritmos de aprendizado de máquina de forma não supervisionada. A metodologia se mostrou capaz de prover a gestão técnica de isoladores poliméricos proporcionando o maior aproveitamento possível da vida útil dos isoladores sem comprometer a segurança do sistema elétrico, elevando assim a confiabilidade, a continuidade e a disponibilidade das linhas de transmissão. |
id |
UFCG_58221c2c3bd257a115601ff52586a94c |
---|---|
oai_identifier_str |
oai:localhost:riufcg/20614 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina.Technical management of polymeric insulators using machine learning.Processamento de energiaIsoladores poliméricosAprendizado de máquinaLinhas de transmissãoRadiação ultravioletaRadiação infravermelhaRuído ultrassônicoEnergy processingPolymeric insulatorsMachine learningTransmission linesUltraviolet imagingInfrared imagingUltrasonic noiseProcesamiento de energíaAisladores poliméricosAprendizaje automáticoLineas de transmisiónRadiación ultravioletaRadiación infrarrojaRuido ultrasónicoTraitement de l'énergieIsolants polymèresApprentissage automatiqueLignes de transmissionRayonnement ultravioletRayonnement infrarougeBruit ultrasonoreEngenharia ElétricaEste trabalho propõe uma metodologia de gestão técnica de isoladores poliméricos baseada na correlação entre atributos, obtidos pela detecção da radiação infravermelha, radiação luminosa ultravioleta e emissão acústica ultrassônica. Para tanto, 60 isoladores de classe 138 kV retirados de operação foram utilizados em ensaios em laboratório para inspeção e obtenção dos atributos. Os atributos foram analisados inicialmente por meio de gráficos de boxplot com o objetivo da identificação e retirada dos outliers. Na sequência o algoritmo k-means foi empregado na divisão do banco de dados com o objetivo de dividir os isoladores em três grupos com diferentes padrões de operação. Estes grupos foram utilizados como referência na criação de um modelo de classificação por redes neurais artificiais do estado operacional de isoladores que possibilitou a classificação de amostras em que não se conhece o estado operacional. A metodologia desenvolvida se apresentou efetiva na classificação do estado operacional de isoladores poliméricos de forma não invasiva, por meio da aplicação em conjunto de técnicas de inspeção associadas a algoritmos de aprendizado de máquina de forma não supervisionada. A metodologia se mostrou capaz de prover a gestão técnica de isoladores poliméricos proporcionando o maior aproveitamento possível da vida útil dos isoladores sem comprometer a segurança do sistema elétrico, elevando assim a confiabilidade, a continuidade e a disponibilidade das linhas de transmissão.This work proposes a methodology for the technical management of polymeric insulators based on the correlation between attributes, obtained by the detection of infrared radiation, ultraviolet light radiation and ultrasonic acoustic emission. Therefore, 60 insulators of class 138 kV removed from operation were used in laboratory tests for inspection and obtaining the attributes. The attributes were initially analyzed using boxplot graphics with the aim of identifying and removing outliers. Next, the k-means algorithm was used to divide the database in order to divide the insulators into three groups with different operating patterns. These groups were used as a reference in the creation of a classification model by artificial neural networks of the operational state of insulators that enabled the classification of samples in which the operational state is unknown. The developed methodology was effective in classifying the operational state of polymeric insulators in a non-invasive way, through the joint application of inspection techniques associated with machine learning algorithms in a non-supervised way. The methodology proved capable of providing the technical management of polymeric insulators, providing the greatest possible use of the insulators' useful life without compromising the safety of the electrical system, thus increasing the reliability, continuity and availability of the transmission lines.CNPqUniversidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICAUFCGCOSTA, Edson Guedes da.COSTA, E. G.http://lattes.cnpq.br/3930289115658143FERNANDES JÚNIOR, Damásio.FERREIRA, Tarso Vilela.COSTA, Eduardo Coelho Marques da.COSTA, Fabiano Fragoso.DIAS, Bruno Albuquerque.2021-06-212021-08-16T22:30:30Z2021-08-162021-08-16T22:30:30Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20614DIAS, B. A. Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. 2021. 100 f. Tese (Doutorado em Engenharia Elétrica) – Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2021.porCapesCopeleinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2021-08-16T22:30:30Zoai:localhost:riufcg/20614Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512021-08-16T22:30:30Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. Technical management of polymeric insulators using machine learning. |
title |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
spellingShingle |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. DIAS, Bruno Albuquerque. Processamento de energia Isoladores poliméricos Aprendizado de máquina Linhas de transmissão Radiação ultravioleta Radiação infravermelha Ruído ultrassônico Energy processing Polymeric insulators Machine learning Transmission lines Ultraviolet imaging Infrared imaging Ultrasonic noise Procesamiento de energía Aisladores poliméricos Aprendizaje automático Lineas de transmisión Radiación ultravioleta Radiación infrarroja Ruido ultrasónico Traitement de l'énergie Isolants polymères Apprentissage automatique Lignes de transmission Rayonnement ultraviolet Rayonnement infrarouge Bruit ultrasonore Engenharia Elétrica |
title_short |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
title_full |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
title_fullStr |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
title_full_unstemmed |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
title_sort |
Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. |
author |
DIAS, Bruno Albuquerque. |
author_facet |
DIAS, Bruno Albuquerque. |
author_role |
author |
dc.contributor.none.fl_str_mv |
COSTA, Edson Guedes da. COSTA, E. G. http://lattes.cnpq.br/3930289115658143 FERNANDES JÚNIOR, Damásio. FERREIRA, Tarso Vilela. COSTA, Eduardo Coelho Marques da. COSTA, Fabiano Fragoso. |
dc.contributor.author.fl_str_mv |
DIAS, Bruno Albuquerque. |
dc.subject.por.fl_str_mv |
Processamento de energia Isoladores poliméricos Aprendizado de máquina Linhas de transmissão Radiação ultravioleta Radiação infravermelha Ruído ultrassônico Energy processing Polymeric insulators Machine learning Transmission lines Ultraviolet imaging Infrared imaging Ultrasonic noise Procesamiento de energía Aisladores poliméricos Aprendizaje automático Lineas de transmisión Radiación ultravioleta Radiación infrarroja Ruido ultrasónico Traitement de l'énergie Isolants polymères Apprentissage automatique Lignes de transmission Rayonnement ultraviolet Rayonnement infrarouge Bruit ultrasonore Engenharia Elétrica |
topic |
Processamento de energia Isoladores poliméricos Aprendizado de máquina Linhas de transmissão Radiação ultravioleta Radiação infravermelha Ruído ultrassônico Energy processing Polymeric insulators Machine learning Transmission lines Ultraviolet imaging Infrared imaging Ultrasonic noise Procesamiento de energía Aisladores poliméricos Aprendizaje automático Lineas de transmisión Radiación ultravioleta Radiación infrarroja Ruido ultrasónico Traitement de l'énergie Isolants polymères Apprentissage automatique Lignes de transmission Rayonnement ultraviolet Rayonnement infrarouge Bruit ultrasonore Engenharia Elétrica |
description |
Este trabalho propõe uma metodologia de gestão técnica de isoladores poliméricos baseada na correlação entre atributos, obtidos pela detecção da radiação infravermelha, radiação luminosa ultravioleta e emissão acústica ultrassônica. Para tanto, 60 isoladores de classe 138 kV retirados de operação foram utilizados em ensaios em laboratório para inspeção e obtenção dos atributos. Os atributos foram analisados inicialmente por meio de gráficos de boxplot com o objetivo da identificação e retirada dos outliers. Na sequência o algoritmo k-means foi empregado na divisão do banco de dados com o objetivo de dividir os isoladores em três grupos com diferentes padrões de operação. Estes grupos foram utilizados como referência na criação de um modelo de classificação por redes neurais artificiais do estado operacional de isoladores que possibilitou a classificação de amostras em que não se conhece o estado operacional. A metodologia desenvolvida se apresentou efetiva na classificação do estado operacional de isoladores poliméricos de forma não invasiva, por meio da aplicação em conjunto de técnicas de inspeção associadas a algoritmos de aprendizado de máquina de forma não supervisionada. A metodologia se mostrou capaz de prover a gestão técnica de isoladores poliméricos proporcionando o maior aproveitamento possível da vida útil dos isoladores sem comprometer a segurança do sistema elétrico, elevando assim a confiabilidade, a continuidade e a disponibilidade das linhas de transmissão. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-21 2021-08-16T22:30:30Z 2021-08-16 2021-08-16T22:30:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20614 DIAS, B. A. Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. 2021. 100 f. Tese (Doutorado em Engenharia Elétrica) – Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2021. |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20614 |
identifier_str_mv |
DIAS, B. A. Gestão técnica de isoladores poliméricos utilizando aprendizado de máquina. 2021. 100 f. Tese (Doutorado em Engenharia Elétrica) – Programa de Pós-Graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2021. |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Capes Copele |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744504865947648 |