Aprendizado automático de relações semânticas entre tags de folksonomias.

Detalhes bibliográficos
Autor(a) principal: RÊGO, Alex Sandro da Cunha.
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFCG
Texto Completo: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885
Resumo: As folksonomias têm despontado como ferramentas úteis de gerenciamento online de conteúdo digital. A exemplo dos populares websites Delicious, Flickr e BibSonomy, diariamente os usuários utilizam esses sistemas para efetuar upload de recursos web (e.g., url, fotos, vídeos e referências bibliográficas) e categorizá-los por meio de tags. A ausência de relações semânticas do tipo sinonímia e hiperonímia/hiponímia no espaço de tags das folksonomias reduz a capacidade do usuário de encontrar recursos relevantes. Para mitigar esse problema, muitos trabalhos de pesquisa se apoiam na aplicação de medidas de similaridade para detecção de sinonímia e construção automática de hierarquias de tags por meio de algoritmos heurísticos. Nesta tese de doutorado, o problema de detecção de sinonímia e hiperonímia/hiponímia entre pares de tags é modelado como um problema de classificação em Aprendizado de Máquina. A partir da literatura, várias medidas de similaridade consideradas boas indicadoras de sinonímia e hiperonímia/hiponímia foram identificadas e empregadas como atributos de aprendizagem. A incidência de um severo desbalanceamento e sobreposição de classes motivou a investigação de técnicas de balanceamento para superar ambos os problemas. Resultados experimentais usando dados reais das folksonomias BibSonomy e Delicious mostraram que a abordagem proposta denominada CPDST supera em termos de acurácia o baseline de melhor desempenho nas tarefas de detecção de sinonímia e hiperonímia/hiponímia. Também, aplicou-se a abordagem CPDST no contexto de geração de listas de tags semanticamente relacionadas, com o intuito de prover acesso a recursos adicionais anotados com outros conceitos pertencentes ao domínio da busca. Além da abordagem CPDST, foram propostos dois algoritmos fundamentados no acesso ao WordNet e ConceptNet para sugestão de listas especializadas com tags sinônimas e hipônimas. O resultado de uma avaliação quantitativa demonstrou que a abordagem CPDST provê listas de tags relevantes em relação às listas providas pelos métodos comparados.
id UFCG_58f0c4245829eb415ce5d74ab44357aa
oai_identifier_str oai:localhost:riufcg/885
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str 4851
spelling Aprendizado automático de relações semânticas entre tags de folksonomias.FolksonomiaRelações SemânticasAprendizado de MáquinaSimilaridade SemânticaSinonímiaHiperonímiaHiponímiaFolksonomySemantic RelationsMachine LearningSemantic SimilaritySynonymyHypernymyHyponymyCiênciasCiência da ComputaçãoAs folksonomias têm despontado como ferramentas úteis de gerenciamento online de conteúdo digital. A exemplo dos populares websites Delicious, Flickr e BibSonomy, diariamente os usuários utilizam esses sistemas para efetuar upload de recursos web (e.g., url, fotos, vídeos e referências bibliográficas) e categorizá-los por meio de tags. A ausência de relações semânticas do tipo sinonímia e hiperonímia/hiponímia no espaço de tags das folksonomias reduz a capacidade do usuário de encontrar recursos relevantes. Para mitigar esse problema, muitos trabalhos de pesquisa se apoiam na aplicação de medidas de similaridade para detecção de sinonímia e construção automática de hierarquias de tags por meio de algoritmos heurísticos. Nesta tese de doutorado, o problema de detecção de sinonímia e hiperonímia/hiponímia entre pares de tags é modelado como um problema de classificação em Aprendizado de Máquina. A partir da literatura, várias medidas de similaridade consideradas boas indicadoras de sinonímia e hiperonímia/hiponímia foram identificadas e empregadas como atributos de aprendizagem. A incidência de um severo desbalanceamento e sobreposição de classes motivou a investigação de técnicas de balanceamento para superar ambos os problemas. Resultados experimentais usando dados reais das folksonomias BibSonomy e Delicious mostraram que a abordagem proposta denominada CPDST supera em termos de acurácia o baseline de melhor desempenho nas tarefas de detecção de sinonímia e hiperonímia/hiponímia. Também, aplicou-se a abordagem CPDST no contexto de geração de listas de tags semanticamente relacionadas, com o intuito de prover acesso a recursos adicionais anotados com outros conceitos pertencentes ao domínio da busca. Além da abordagem CPDST, foram propostos dois algoritmos fundamentados no acesso ao WordNet e ConceptNet para sugestão de listas especializadas com tags sinônimas e hipônimas. O resultado de uma avaliação quantitativa demonstrou que a abordagem CPDST provê listas de tags relevantes em relação às listas providas pelos métodos comparados.Folksonomies have emerged as useful tools for online management of digital content. Popular websites as Delicious, Flickr and BibSonomy are now widespread with thousands of users using them daily to upload digital content (e.g., webpages, photos, videos and bibliographic information) and tagging for later retrieval. The lack of semantic relations such as synonym and hypernym/hyponym in the tag space may diminish the ability of users in finding relevant resources. Many research works in the literature employ similarity measures to detect synonymy and to build hierarchies of tags automatically by means of heuristic algorithms. In this thesis, the problems of synonym and subsumption detection between pairs of tags are cast as a pairwise classification problem. From the literature, several similarity measures that are good indicators of synonymy and subsumption were identified, which are used as learning features. Under this setting, there is a severe class imbalance and class overlapping which motivated us to investigate and employ class imbalance techniques to overcome these problems. A comprehensive set of experiments were conducted on two large real-world datasets of BibSonomy and Delicious systems, showing that the proposed approach named CPDST outperforms the best performing heuristic-based baseline in the tasks of synonym and subsumption detection. CPDST is also applied in the context of tag list generation for providing access to additional resources annotated with other semantically related tags. Besides CPDST approach, two algorithms based on WordNet and ConceptNet accesses are proposed for capturing specifically synonyms and hyponyms. The outcome of an evaluative quantitative analysis showed that CPDST approach yields relevant tag lists in relation to the produced ones by the compared methods.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGMARINHO, Leandro Balby.MARINHO, L. B.http://lattes.cnpq.br/3728312501032061PIRES, Carlos Eduardo Santos.PIRES, C. E. S.http://lattes.cnpq.br/4986021622366786RÊGO, Alex Sandro da Cunha.20162018-06-05T14:49:44Z2018-06-052018-06-05T14:49:44Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885RÊGO, A. S. da C. Aprendizado automático de relações semânticas entre tags de folksonomias. 2016. 167 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-06-02T22:33:21Zoai:localhost:riufcg/885Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-06-02T22:33:21Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Aprendizado automático de relações semânticas entre tags de folksonomias.
title Aprendizado automático de relações semânticas entre tags de folksonomias.
spellingShingle Aprendizado automático de relações semânticas entre tags de folksonomias.
RÊGO, Alex Sandro da Cunha.
Folksonomia
Relações Semânticas
Aprendizado de Máquina
Similaridade Semântica
Sinonímia
Hiperonímia
Hiponímia
Folksonomy
Semantic Relations
Machine Learning
Semantic Similarity
Synonymy
Hypernymy
Hyponymy
Ciências
Ciência da Computação
title_short Aprendizado automático de relações semânticas entre tags de folksonomias.
title_full Aprendizado automático de relações semânticas entre tags de folksonomias.
title_fullStr Aprendizado automático de relações semânticas entre tags de folksonomias.
title_full_unstemmed Aprendizado automático de relações semânticas entre tags de folksonomias.
title_sort Aprendizado automático de relações semânticas entre tags de folksonomias.
author RÊGO, Alex Sandro da Cunha.
author_facet RÊGO, Alex Sandro da Cunha.
author_role author
dc.contributor.none.fl_str_mv MARINHO, Leandro Balby.
MARINHO, L. B.
http://lattes.cnpq.br/3728312501032061
PIRES, Carlos Eduardo Santos.
PIRES, C. E. S.
http://lattes.cnpq.br/4986021622366786
dc.contributor.author.fl_str_mv RÊGO, Alex Sandro da Cunha.
dc.subject.por.fl_str_mv Folksonomia
Relações Semânticas
Aprendizado de Máquina
Similaridade Semântica
Sinonímia
Hiperonímia
Hiponímia
Folksonomy
Semantic Relations
Machine Learning
Semantic Similarity
Synonymy
Hypernymy
Hyponymy
Ciências
Ciência da Computação
topic Folksonomia
Relações Semânticas
Aprendizado de Máquina
Similaridade Semântica
Sinonímia
Hiperonímia
Hiponímia
Folksonomy
Semantic Relations
Machine Learning
Semantic Similarity
Synonymy
Hypernymy
Hyponymy
Ciências
Ciência da Computação
description As folksonomias têm despontado como ferramentas úteis de gerenciamento online de conteúdo digital. A exemplo dos populares websites Delicious, Flickr e BibSonomy, diariamente os usuários utilizam esses sistemas para efetuar upload de recursos web (e.g., url, fotos, vídeos e referências bibliográficas) e categorizá-los por meio de tags. A ausência de relações semânticas do tipo sinonímia e hiperonímia/hiponímia no espaço de tags das folksonomias reduz a capacidade do usuário de encontrar recursos relevantes. Para mitigar esse problema, muitos trabalhos de pesquisa se apoiam na aplicação de medidas de similaridade para detecção de sinonímia e construção automática de hierarquias de tags por meio de algoritmos heurísticos. Nesta tese de doutorado, o problema de detecção de sinonímia e hiperonímia/hiponímia entre pares de tags é modelado como um problema de classificação em Aprendizado de Máquina. A partir da literatura, várias medidas de similaridade consideradas boas indicadoras de sinonímia e hiperonímia/hiponímia foram identificadas e empregadas como atributos de aprendizagem. A incidência de um severo desbalanceamento e sobreposição de classes motivou a investigação de técnicas de balanceamento para superar ambos os problemas. Resultados experimentais usando dados reais das folksonomias BibSonomy e Delicious mostraram que a abordagem proposta denominada CPDST supera em termos de acurácia o baseline de melhor desempenho nas tarefas de detecção de sinonímia e hiperonímia/hiponímia. Também, aplicou-se a abordagem CPDST no contexto de geração de listas de tags semanticamente relacionadas, com o intuito de prover acesso a recursos adicionais anotados com outros conceitos pertencentes ao domínio da busca. Além da abordagem CPDST, foram propostos dois algoritmos fundamentados no acesso ao WordNet e ConceptNet para sugestão de listas especializadas com tags sinônimas e hipônimas. O resultado de uma avaliação quantitativa demonstrou que a abordagem CPDST provê listas de tags relevantes em relação às listas providas pelos métodos comparados.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-06-05T14:49:44Z
2018-06-05
2018-06-05T14:49:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885
RÊGO, A. S. da C. Aprendizado automático de relações semânticas entre tags de folksonomias. 2016. 167 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885
identifier_str_mv RÊGO, A. S. da C. Aprendizado automático de relações semânticas entre tags de folksonomias. 2016. 167 f. Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/885
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1809744353027948544