Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 |
Resumo: | Com o surgimento da Web 2.0 o volume de informações disponíveis na Internet cresceu acentuadamente, tornando cada vez mais difícil para o usuário alcançar a informação desejada. Sistemas de recomendação surgem como uma alternativa a esse problema, sugerindo conteúdo personalizado. A filtragem colaborativa e uma das abordagens mais eficazes na área de recomendação. Dentre os algoritmos colaborativos. os modelos baseados em fatores latentes constituem o estado da arte na área. Entretanto, tais modelos não conseguem fornecer uma justificativa para o item recomendado, o que em determinados domínios pode tornar a recomendação desinteressante e facilmente ignorada pelo usuário. Diante desse contexto. uma alternativa interessante e o k-Nearest Neighbors (kNN). um método simples, popular e capaz de fornecer excelentes resultados. Essa técnica gera recomendações a partir das avaliações dos usuários mais similares (vizinhos mais próximos) ao usuário alvo. Apesar de sua eficácia. o kNN apresenta um custo computacional elevado ao ser executado em grandes bases de dados, tornando sua aplicação inviável em alguns domínios. Neste trabalho objetiva-se melhorar o desempenho do kNN a partir da restrição do espaço de busca dos vizinhos mais próximos. O método proposto utiliza uma heurística de seleção baseada na escolha dos usuários que mais avaliaram itens. Como resultado, constatou-se que utilizando apenas 15% dos usuários na busca dos vizinhos, consegue-se reduzir significativamente o custo computacional. porem mantendo alto nível de acurácia. |
id |
UFCG_c642944ce5dc5c2da990c62c15284242 |
---|---|
oai_identifier_str |
oai:localhost:riufcg/6303 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors.A collaborative filtering approach to reducing the computational cost of the k-Nearest Neighbors method.k-Nearest Neighbors (KNN)Sistemas de RecomendaçãoFiltragem ColaborativaHeurística de SeleçãoRedução da Base de DadosParticionamento Binário do Espaço (PBE)Approximate Nearest Neighbors (ANN)Recommendation SystemsCollaborative FilteringSelection HeuristicsDatabase ReductionBinary Space Partitioning (PBE)Ciência da ComputaçãoCom o surgimento da Web 2.0 o volume de informações disponíveis na Internet cresceu acentuadamente, tornando cada vez mais difícil para o usuário alcançar a informação desejada. Sistemas de recomendação surgem como uma alternativa a esse problema, sugerindo conteúdo personalizado. A filtragem colaborativa e uma das abordagens mais eficazes na área de recomendação. Dentre os algoritmos colaborativos. os modelos baseados em fatores latentes constituem o estado da arte na área. Entretanto, tais modelos não conseguem fornecer uma justificativa para o item recomendado, o que em determinados domínios pode tornar a recomendação desinteressante e facilmente ignorada pelo usuário. Diante desse contexto. uma alternativa interessante e o k-Nearest Neighbors (kNN). um método simples, popular e capaz de fornecer excelentes resultados. Essa técnica gera recomendações a partir das avaliações dos usuários mais similares (vizinhos mais próximos) ao usuário alvo. Apesar de sua eficácia. o kNN apresenta um custo computacional elevado ao ser executado em grandes bases de dados, tornando sua aplicação inviável em alguns domínios. Neste trabalho objetiva-se melhorar o desempenho do kNN a partir da restrição do espaço de busca dos vizinhos mais próximos. O método proposto utiliza uma heurística de seleção baseada na escolha dos usuários que mais avaliaram itens. Como resultado, constatou-se que utilizando apenas 15% dos usuários na busca dos vizinhos, consegue-se reduzir significativamente o custo computacional. porem mantendo alto nível de acurácia.With the emergence of Web 2.0 the volume of information available on the Internet has grown dramatically, becoming increasingly difficult for the user to achieve the desired information. Recommendation systems emerge as an alternative to this problem, suggesting personalized content. Collaborative filtering is one of the most effective approaches in the area of recommendation. Among the collaborative algorithms, latent factors models are the state of the art in the area. However, such models can not provide a justification for the recommended item, which in some areas can make the recommendation uninteresting and easily ignored by the target user. In this context, an interesting alternative is the k-Nearest Neighbors ( kNN ). a simple, popular and very robust method. This technique generates recommendations from ratings of the most similar users (nearest neighbors) to the target user. Despite its efficiency, kNN has a high computational cost when executed over large databases, making its application impractical in some domains. In this work we aim to improve the performance of kNN from the restriction of the search space of the nearest neighbors. The proposed method uses a user heuristic selection based on the choice of most rated items. As a result it was found that using only 15% of the neighbors searching space, it was possible to significantly reduce the computational cost, while maintaining high accuracy level.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGALMEIDA, Hyggo Oliveira de.PERKUSICH, Angelo.ALMEIDA, H. O.PERKUSICH, A.http://lattes.cnpq.br/4993914550234923http://lattes.cnpq.br/9439858291700830MARINHO, Leandro Balby.MORAIS, Marcos Ricardo Alcântara.COSTA, Antonio Alexandre Moura.2014-06-262019-08-28T18:55:07Z2019-08-282019-08-28T18:55:07Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303COSTA, Antonio Alexandre Moura. Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. 2014. 91f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-03-23T10:43:31Zoai:localhost:riufcg/6303Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-03-23T10:43:31Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. A collaborative filtering approach to reducing the computational cost of the k-Nearest Neighbors method. |
title |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
spellingShingle |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. COSTA, Antonio Alexandre Moura. k-Nearest Neighbors (KNN) Sistemas de Recomendação Filtragem Colaborativa Heurística de Seleção Redução da Base de Dados Particionamento Binário do Espaço (PBE) Approximate Nearest Neighbors (ANN) Recommendation Systems Collaborative Filtering Selection Heuristics Database Reduction Binary Space Partitioning (PBE) Ciência da Computação |
title_short |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
title_full |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
title_fullStr |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
title_full_unstemmed |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
title_sort |
Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. |
author |
COSTA, Antonio Alexandre Moura. |
author_facet |
COSTA, Antonio Alexandre Moura. |
author_role |
author |
dc.contributor.none.fl_str_mv |
ALMEIDA, Hyggo Oliveira de. PERKUSICH, Angelo. ALMEIDA, H. O. PERKUSICH, A. http://lattes.cnpq.br/4993914550234923 http://lattes.cnpq.br/9439858291700830 MARINHO, Leandro Balby. MORAIS, Marcos Ricardo Alcântara. |
dc.contributor.author.fl_str_mv |
COSTA, Antonio Alexandre Moura. |
dc.subject.por.fl_str_mv |
k-Nearest Neighbors (KNN) Sistemas de Recomendação Filtragem Colaborativa Heurística de Seleção Redução da Base de Dados Particionamento Binário do Espaço (PBE) Approximate Nearest Neighbors (ANN) Recommendation Systems Collaborative Filtering Selection Heuristics Database Reduction Binary Space Partitioning (PBE) Ciência da Computação |
topic |
k-Nearest Neighbors (KNN) Sistemas de Recomendação Filtragem Colaborativa Heurística de Seleção Redução da Base de Dados Particionamento Binário do Espaço (PBE) Approximate Nearest Neighbors (ANN) Recommendation Systems Collaborative Filtering Selection Heuristics Database Reduction Binary Space Partitioning (PBE) Ciência da Computação |
description |
Com o surgimento da Web 2.0 o volume de informações disponíveis na Internet cresceu acentuadamente, tornando cada vez mais difícil para o usuário alcançar a informação desejada. Sistemas de recomendação surgem como uma alternativa a esse problema, sugerindo conteúdo personalizado. A filtragem colaborativa e uma das abordagens mais eficazes na área de recomendação. Dentre os algoritmos colaborativos. os modelos baseados em fatores latentes constituem o estado da arte na área. Entretanto, tais modelos não conseguem fornecer uma justificativa para o item recomendado, o que em determinados domínios pode tornar a recomendação desinteressante e facilmente ignorada pelo usuário. Diante desse contexto. uma alternativa interessante e o k-Nearest Neighbors (kNN). um método simples, popular e capaz de fornecer excelentes resultados. Essa técnica gera recomendações a partir das avaliações dos usuários mais similares (vizinhos mais próximos) ao usuário alvo. Apesar de sua eficácia. o kNN apresenta um custo computacional elevado ao ser executado em grandes bases de dados, tornando sua aplicação inviável em alguns domínios. Neste trabalho objetiva-se melhorar o desempenho do kNN a partir da restrição do espaço de busca dos vizinhos mais próximos. O método proposto utiliza uma heurística de seleção baseada na escolha dos usuários que mais avaliaram itens. Como resultado, constatou-se que utilizando apenas 15% dos usuários na busca dos vizinhos, consegue-se reduzir significativamente o custo computacional. porem mantendo alto nível de acurácia. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-26 2019-08-28T18:55:07Z 2019-08-28 2019-08-28T18:55:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 COSTA, Antonio Alexandre Moura. Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. 2014. 91f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 |
identifier_str_mv |
COSTA, Antonio Alexandre Moura. Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors. 2014. 91f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2014. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744389570822144 |