PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]

Detalhes bibliográficos
Autor(a) principal: Jodas, Danilo Samuel [UNESP]
Data de Publicação: 2023
Outros Autores: Passos, Leandro Aparecido, Adeel, Ahsan, Papa, João Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.simpa.2022.100459
http://hdl.handle.net/11449/249534
Resumo: This paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage.
id UNSP_354b3e9c305de32fe5b991709a15c914
oai_identifier_str oai:repositorio.unesp.br:11449/249534
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]ClassificationClusteringk-Nearest NeighborsMachine learningPythonThis paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)PetrobrasConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Engineering and Physical Sciences Research CouncilSão Paulo State University, SPSchool of Engineering and Informatics University of WolverhamptonSão Paulo State University, SPFAPESP: #2013/07375-0FAPESP: #2014/12236-1Petrobras: #2017/00285-6FAPESP: #2017/02286-0FAPESP: #2018/21934-5FAPESP: #2019/07665-4FAPESP: #2019/18287-0CNPq: #307066/2017-7CNPq: #427968/2018-6Engineering and Physical Sciences Research Council: EP/T021063/1Universidade Estadual Paulista (UNESP)University of WolverhamptonJodas, Danilo Samuel [UNESP]Passos, Leandro AparecidoAdeel, AhsanPapa, João Paulo [UNESP]2023-07-29T16:02:22Z2023-07-29T16:02:22Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.simpa.2022.100459Software Impacts, v. 15.2665-9638http://hdl.handle.net/11449/24953410.1016/j.simpa.2022.1004592-s2.0-85145703582Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSoftware Impactsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/249534Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:30:21.362691Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
title PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
spellingShingle PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
Jodas, Danilo Samuel [UNESP]
Classification
Clustering
k-Nearest Neighbors
Machine learning
Python
title_short PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
title_full PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
title_fullStr PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
title_full_unstemmed PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
title_sort PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
author Jodas, Danilo Samuel [UNESP]
author_facet Jodas, Danilo Samuel [UNESP]
Passos, Leandro Aparecido
Adeel, Ahsan
Papa, João Paulo [UNESP]
author_role author
author2 Passos, Leandro Aparecido
Adeel, Ahsan
Papa, João Paulo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
University of Wolverhampton
dc.contributor.author.fl_str_mv Jodas, Danilo Samuel [UNESP]
Passos, Leandro Aparecido
Adeel, Ahsan
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Classification
Clustering
k-Nearest Neighbors
Machine learning
Python
topic Classification
Clustering
k-Nearest Neighbors
Machine learning
Python
description This paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T16:02:22Z
2023-07-29T16:02:22Z
2023-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.simpa.2022.100459
Software Impacts, v. 15.
2665-9638
http://hdl.handle.net/11449/249534
10.1016/j.simpa.2022.100459
2-s2.0-85145703582
url http://dx.doi.org/10.1016/j.simpa.2022.100459
http://hdl.handle.net/11449/249534
identifier_str_mv Software Impacts, v. 15.
2665-9638
10.1016/j.simpa.2022.100459
2-s2.0-85145703582
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Software Impacts
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129433405489152