PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.simpa.2022.100459 http://hdl.handle.net/11449/249534 |
Resumo: | This paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage. |
id |
UNSP_354b3e9c305de32fe5b991709a15c914 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/249534 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented]ClassificationClusteringk-Nearest NeighborsMachine learningPythonThis paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)PetrobrasConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Engineering and Physical Sciences Research CouncilSão Paulo State University, SPSchool of Engineering and Informatics University of WolverhamptonSão Paulo State University, SPFAPESP: #2013/07375-0FAPESP: #2014/12236-1Petrobras: #2017/00285-6FAPESP: #2017/02286-0FAPESP: #2018/21934-5FAPESP: #2019/07665-4FAPESP: #2019/18287-0CNPq: #307066/2017-7CNPq: #427968/2018-6Engineering and Physical Sciences Research Council: EP/T021063/1Universidade Estadual Paulista (UNESP)University of WolverhamptonJodas, Danilo Samuel [UNESP]Passos, Leandro AparecidoAdeel, AhsanPapa, João Paulo [UNESP]2023-07-29T16:02:22Z2023-07-29T16:02:22Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.simpa.2022.100459Software Impacts, v. 15.2665-9638http://hdl.handle.net/11449/24953410.1016/j.simpa.2022.1004592-s2.0-85145703582Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSoftware Impactsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/249534Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:30:21.362691Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
title |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
spellingShingle |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] Jodas, Danilo Samuel [UNESP] Classification Clustering k-Nearest Neighbors Machine learning Python |
title_short |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
title_full |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
title_fullStr |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
title_full_unstemmed |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
title_sort |
PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented] |
author |
Jodas, Danilo Samuel [UNESP] |
author_facet |
Jodas, Danilo Samuel [UNESP] Passos, Leandro Aparecido Adeel, Ahsan Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Passos, Leandro Aparecido Adeel, Ahsan Papa, João Paulo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) University of Wolverhampton |
dc.contributor.author.fl_str_mv |
Jodas, Danilo Samuel [UNESP] Passos, Leandro Aparecido Adeel, Ahsan Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Classification Clustering k-Nearest Neighbors Machine learning Python |
topic |
Classification Clustering k-Nearest Neighbors Machine learning Python |
description |
This paper presents an open-source implementation of PL-kNN, a parameterless version of the k-Nearest Neighbors algorithm. The proposed model, developed in Python 3.6, was designed to avoid the choice of the k parameter required by the standard k-Nearest Neighbors technique. Essentially, the model computes the number of nearest neighbors of a target sample using the data distribution of the training set. The source code provides functions resembling the Scikit-learn methods for fitting the model and predicting the classes of the new samples. The source code is available in the GitHub repository with instructions for installation and examples for usage. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T16:02:22Z 2023-07-29T16:02:22Z 2023-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.simpa.2022.100459 Software Impacts, v. 15. 2665-9638 http://hdl.handle.net/11449/249534 10.1016/j.simpa.2022.100459 2-s2.0-85145703582 |
url |
http://dx.doi.org/10.1016/j.simpa.2022.100459 http://hdl.handle.net/11449/249534 |
identifier_str_mv |
Software Impacts, v. 15. 2665-9638 10.1016/j.simpa.2022.100459 2-s2.0-85145703582 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Software Impacts |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129433405489152 |