Time interval of maximum predictability in coupled climate and hydrological models for reservoir management
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12795 |
Resumo: | This work seeks to integrate climatic, hydrologic, and reservoir operation models in order to optimize available water volume in the Brazilian Northeast. The global ECHAM 4.5 climate model was used to feed the RAMS regional climate model for the Alto Jaguaribe hydrographic basin. Resulting precipitation values were calibrated by the probability density function (PDF) correction of simulated data compared with average daily precipitation data using the Thiessen method for the period 1979-2009. The Heidke Skill Score (HSS) was used to evaluate model performance in the Maximum Predictable Time Interval (ITEMP) of the atmospheric model. These PDF-corrected precipitation data, both observed and RAMS-simulated, were inserted in the hydrologic Soil Moisture Account (SMA) model from the Hydrologic Engineering Center â Hydrologic Modeling System (HEC-HMS) to determine modeled flows. These flows were then compared with median observed flows. To calibrate and validate the SMA, an iterative method was used to minimize percentage error of volume. The data returned by this cascade model was applied to assisting policy-makers determine water releases from the OrÃs reservoir. Three different scenarios were compared, the first based on observed flows, the second flows simulated by SMA with observed precipitation, and the third by flows simulated by SMA driven by the RAMS-PDF precipitation data. The RAMS model showed optimal efficiency in precipitation prediction on a 30 to 45 day interval, with HSS values of 0.56. The SMA model showed satisfactory performance with Nash-Sutcliffe values of 0.89 in the calibration phase and 0.67 in the validation phase, demonstrating its capacity to assist hydrological modeling in the semi-arid. This cascade model showed potential in accurately representing median inflows for the reservoir and as such can be used as a hydrologic tool, assisting reservoir operation decisions to meet the regionâs demand. Keywords: Soil Moisture Account; hydrologic |
id |
UFC_06a59db43006b9099e610997215e5512 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:8684 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTime interval of maximum predictability in coupled climate and hydrological models for reservoir managementIntervalo de tempo de mÃxima previsibilidade no acoplamento de modelos climÃticos e hidrolÃgico para gerenciamento de reservatÃrio2014-10-06Josà Nilson Beserra Campos00096768304http://lattes.cnpq.br/0852243918381426Ticiana Marinho de Carvalho Studart21418080306Josà Maria Brabo Alves15422941268http://lattes.cnpq.br/6089287551555329Francisco de Assis de Souza Filho23199610382http://lattes.cnpq.br/4988966386848759Rosiberto Salustiano da Silva Junior03253415406http://lattes.cnpq.br/179823220120517404446633473http://lattes.cnpq.br/0086158908740730Samuellson Lopes CabralUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia CivilUFCBR Modelagem hidrolÃgica ReservatÃrios SemiÃridoSoil Moisture Account hydrologic modeling reservoir operation semi-aridENGENHARIA CIVILThis work seeks to integrate climatic, hydrologic, and reservoir operation models in order to optimize available water volume in the Brazilian Northeast. The global ECHAM 4.5 climate model was used to feed the RAMS regional climate model for the Alto Jaguaribe hydrographic basin. Resulting precipitation values were calibrated by the probability density function (PDF) correction of simulated data compared with average daily precipitation data using the Thiessen method for the period 1979-2009. The Heidke Skill Score (HSS) was used to evaluate model performance in the Maximum Predictable Time Interval (ITEMP) of the atmospheric model. These PDF-corrected precipitation data, both observed and RAMS-simulated, were inserted in the hydrologic Soil Moisture Account (SMA) model from the Hydrologic Engineering Center â Hydrologic Modeling System (HEC-HMS) to determine modeled flows. These flows were then compared with median observed flows. To calibrate and validate the SMA, an iterative method was used to minimize percentage error of volume. The data returned by this cascade model was applied to assisting policy-makers determine water releases from the OrÃs reservoir. Three different scenarios were compared, the first based on observed flows, the second flows simulated by SMA with observed precipitation, and the third by flows simulated by SMA driven by the RAMS-PDF precipitation data. The RAMS model showed optimal efficiency in precipitation prediction on a 30 to 45 day interval, with HSS values of 0.56. The SMA model showed satisfactory performance with Nash-Sutcliffe values of 0.89 in the calibration phase and 0.67 in the validation phase, demonstrating its capacity to assist hydrological modeling in the semi-arid. This cascade model showed potential in accurately representing median inflows for the reservoir and as such can be used as a hydrologic tool, assisting reservoir operation decisions to meet the regionâs demand. Keywords: Soil Moisture Account; hydrologicO presente trabalho visa o acoplamento de modelo atmosfÃrico, hidrolÃgico e de operaÃÃo de reservatÃrio com vistas à otimizaÃÃo da liberaÃÃo de Ãguas no semiÃrido do nordeste brasileiro. O modelo atmosfÃrico regional RAMS foi forÃado pelo modelo atmosfÃrico global ECHAM 4.5, na bacia hidrogrÃfica do Alto Jaguaribe, e em seguida, aplicada a correÃÃo probability density function (PDF) nos dados simulados e comparado com dados diÃrio de precipitaÃÃo mÃdia observada pelo mÃtodo de Thiessen no perÃodo de 1979-2009. Foi utilizando o Heidke Skill Score (HSS) como mÃtrica principal para avaliar o desempenho da previsÃo em busca do Intervalo de Tempo de MÃxima Previsibilidade (ITEMP) do modelo atmosfÃrico. Os dados de precipitaÃÃes observados e simulados pelo RAMS com correÃÃes PDFs foram inseridos no modelo hidrolÃgico Soil Moisture Account (SMA) do Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS), e comparado com as vazÃes mÃdias observadas. Para a calibraÃÃo e validaÃÃo do SMA, foi realizado um mÃtodo interativo para minimizar uma funÃÃo objetivo, com base no erro percentual do volume. Por fim foi desenvolvido e avaliado um modelo de cascata a fim de comparar as decisÃes operacionais de liberaÃÃo do reservatÃrio OrÃs com diferentes cenÃrios com base nas vazÃes observadas, vazÃes simuladas pelo SMA com a precipitaÃÃo observada e vazÃes simuladas pelo SMA forÃada com o RAMS-PDF. O modelo RAMS mostrou melhor eficiÃncia na previsÃo da precipitaÃÃo no intervalo de 30 a 45 dias, com valores de HSS = 0,56. O modelo SMA mostrou desempenho satisfatÃrio com valores de Nash-Sutcliffe de 0,89 na fase de calibraÃÃo e 0,67 na fase de validaÃÃo, mostrando ser uma nova alternativa de utilizaÃÃo de modelo hidrolÃgico no semiÃrido. O modelo de cascata mostrou potencial em representar bem as afluÃncias mÃdias do reservatÃrio, podendo tornar uma ferramenta hidrolÃgica, auxiliando as decisÃes de operaÃÃo dos reservatÃrios, atendendo as demandas da regiÃo.CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12795application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:26:08Zmail@mail.com - |
dc.title.en.fl_str_mv |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
dc.title.alternative.pt.fl_str_mv |
Intervalo de tempo de mÃxima previsibilidade no acoplamento de modelos climÃticos e hidrolÃgico para gerenciamento de reservatÃrio |
title |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
spellingShingle |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management Samuellson Lopes Cabral Modelagem hidrolÃgica ReservatÃrios SemiÃrido Soil Moisture Account hydrologic modeling reservoir operation semi-arid ENGENHARIA CIVIL |
title_short |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
title_full |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
title_fullStr |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
title_full_unstemmed |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
title_sort |
Time interval of maximum predictability in coupled climate and hydrological models for reservoir management |
author |
Samuellson Lopes Cabral |
author_facet |
Samuellson Lopes Cabral |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Josà Nilson Beserra Campos |
dc.contributor.advisor1ID.fl_str_mv |
00096768304 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0852243918381426 |
dc.contributor.referee1.fl_str_mv |
Ticiana Marinho de Carvalho Studart |
dc.contributor.referee1ID.fl_str_mv |
21418080306 |
dc.contributor.referee2.fl_str_mv |
Josà Maria Brabo Alves |
dc.contributor.referee2ID.fl_str_mv |
15422941268 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6089287551555329 |
dc.contributor.referee3.fl_str_mv |
Francisco de Assis de Souza Filho |
dc.contributor.referee3ID.fl_str_mv |
23199610382 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4988966386848759 |
dc.contributor.referee4.fl_str_mv |
Rosiberto Salustiano da Silva Junior |
dc.contributor.referee4ID.fl_str_mv |
03253415406 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/1798232201205174 |
dc.contributor.authorID.fl_str_mv |
04446633473 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0086158908740730 |
dc.contributor.author.fl_str_mv |
Samuellson Lopes Cabral |
contributor_str_mv |
Josà Nilson Beserra Campos Ticiana Marinho de Carvalho Studart Josà Maria Brabo Alves Francisco de Assis de Souza Filho Rosiberto Salustiano da Silva Junior |
dc.subject.por.fl_str_mv |
Modelagem hidrolÃgica ReservatÃrios SemiÃrido |
topic |
Modelagem hidrolÃgica ReservatÃrios SemiÃrido Soil Moisture Account hydrologic modeling reservoir operation semi-arid ENGENHARIA CIVIL |
dc.subject.eng.fl_str_mv |
Soil Moisture Account hydrologic modeling reservoir operation semi-arid |
dc.subject.cnpq.fl_str_mv |
ENGENHARIA CIVIL |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
This work seeks to integrate climatic, hydrologic, and reservoir operation models in order to optimize available water volume in the Brazilian Northeast. The global ECHAM 4.5 climate model was used to feed the RAMS regional climate model for the Alto Jaguaribe hydrographic basin. Resulting precipitation values were calibrated by the probability density function (PDF) correction of simulated data compared with average daily precipitation data using the Thiessen method for the period 1979-2009. The Heidke Skill Score (HSS) was used to evaluate model performance in the Maximum Predictable Time Interval (ITEMP) of the atmospheric model. These PDF-corrected precipitation data, both observed and RAMS-simulated, were inserted in the hydrologic Soil Moisture Account (SMA) model from the Hydrologic Engineering Center â Hydrologic Modeling System (HEC-HMS) to determine modeled flows. These flows were then compared with median observed flows. To calibrate and validate the SMA, an iterative method was used to minimize percentage error of volume. The data returned by this cascade model was applied to assisting policy-makers determine water releases from the OrÃs reservoir. Three different scenarios were compared, the first based on observed flows, the second flows simulated by SMA with observed precipitation, and the third by flows simulated by SMA driven by the RAMS-PDF precipitation data. The RAMS model showed optimal efficiency in precipitation prediction on a 30 to 45 day interval, with HSS values of 0.56. The SMA model showed satisfactory performance with Nash-Sutcliffe values of 0.89 in the calibration phase and 0.67 in the validation phase, demonstrating its capacity to assist hydrological modeling in the semi-arid. This cascade model showed potential in accurately representing median inflows for the reservoir and as such can be used as a hydrologic tool, assisting reservoir operation decisions to meet the regionâs demand. Keywords: Soil Moisture Account; hydrologic O presente trabalho visa o acoplamento de modelo atmosfÃrico, hidrolÃgico e de operaÃÃo de reservatÃrio com vistas à otimizaÃÃo da liberaÃÃo de Ãguas no semiÃrido do nordeste brasileiro. O modelo atmosfÃrico regional RAMS foi forÃado pelo modelo atmosfÃrico global ECHAM 4.5, na bacia hidrogrÃfica do Alto Jaguaribe, e em seguida, aplicada a correÃÃo probability density function (PDF) nos dados simulados e comparado com dados diÃrio de precipitaÃÃo mÃdia observada pelo mÃtodo de Thiessen no perÃodo de 1979-2009. Foi utilizando o Heidke Skill Score (HSS) como mÃtrica principal para avaliar o desempenho da previsÃo em busca do Intervalo de Tempo de MÃxima Previsibilidade (ITEMP) do modelo atmosfÃrico. Os dados de precipitaÃÃes observados e simulados pelo RAMS com correÃÃes PDFs foram inseridos no modelo hidrolÃgico Soil Moisture Account (SMA) do Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS), e comparado com as vazÃes mÃdias observadas. Para a calibraÃÃo e validaÃÃo do SMA, foi realizado um mÃtodo interativo para minimizar uma funÃÃo objetivo, com base no erro percentual do volume. Por fim foi desenvolvido e avaliado um modelo de cascata a fim de comparar as decisÃes operacionais de liberaÃÃo do reservatÃrio OrÃs com diferentes cenÃrios com base nas vazÃes observadas, vazÃes simuladas pelo SMA com a precipitaÃÃo observada e vazÃes simuladas pelo SMA forÃada com o RAMS-PDF. O modelo RAMS mostrou melhor eficiÃncia na previsÃo da precipitaÃÃo no intervalo de 30 a 45 dias, com valores de HSS = 0,56. O modelo SMA mostrou desempenho satisfatÃrio com valores de Nash-Sutcliffe de 0,89 na fase de calibraÃÃo e 0,67 na fase de validaÃÃo, mostrando ser uma nova alternativa de utilizaÃÃo de modelo hidrolÃgico no semiÃrido. O modelo de cascata mostrou potencial em representar bem as afluÃncias mÃdias do reservatÃrio, podendo tornar uma ferramenta hidrolÃgica, auxiliando as decisÃes de operaÃÃo dos reservatÃrios, atendendo as demandas da regiÃo. |
description |
This work seeks to integrate climatic, hydrologic, and reservoir operation models in order to optimize available water volume in the Brazilian Northeast. The global ECHAM 4.5 climate model was used to feed the RAMS regional climate model for the Alto Jaguaribe hydrographic basin. Resulting precipitation values were calibrated by the probability density function (PDF) correction of simulated data compared with average daily precipitation data using the Thiessen method for the period 1979-2009. The Heidke Skill Score (HSS) was used to evaluate model performance in the Maximum Predictable Time Interval (ITEMP) of the atmospheric model. These PDF-corrected precipitation data, both observed and RAMS-simulated, were inserted in the hydrologic Soil Moisture Account (SMA) model from the Hydrologic Engineering Center â Hydrologic Modeling System (HEC-HMS) to determine modeled flows. These flows were then compared with median observed flows. To calibrate and validate the SMA, an iterative method was used to minimize percentage error of volume. The data returned by this cascade model was applied to assisting policy-makers determine water releases from the OrÃs reservoir. Three different scenarios were compared, the first based on observed flows, the second flows simulated by SMA with observed precipitation, and the third by flows simulated by SMA driven by the RAMS-PDF precipitation data. The RAMS model showed optimal efficiency in precipitation prediction on a 30 to 45 day interval, with HSS values of 0.56. The SMA model showed satisfactory performance with Nash-Sutcliffe values of 0.89 in the calibration phase and 0.67 in the validation phase, demonstrating its capacity to assist hydrological modeling in the semi-arid. This cascade model showed potential in accurately representing median inflows for the reservoir and as such can be used as a hydrologic tool, assisting reservoir operation decisions to meet the regionâs demand. Keywords: Soil Moisture Account; hydrologic |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-10-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12795 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12795 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295195393949696 |