DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos

Detalhes bibliográficos
Autor(a) principal: Fabio Rocha Barbosa
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9189
Resumo: O diagnÃstico de falhas incipientes em transformadores de potÃncia imersos em Ãleo està diretamente relacionado à avaliaÃÃo das condiÃÃes do sistema de isolamento. Este estudo aborda a relaÃÃo entre os gases dissolvidos no Ãleo e a qualidade do Ãleo mineral isolante utilizado em transformadores de potÃncia. As redes neurais artificiais sÃo utilizadas na abordagem da avaliaÃÃo das condiÃÃes operacionais do Ãleo isolante em transformadores de potÃncia, que à caracterizada por um comportamento dinÃmico nÃo-linear. As condiÃÃes de operaÃÃo e a integridade do sistema de isolamento de um transformador de potÃncia podem ser inferidas atravÃs das anÃlises fÃsico-quÃmicas e cromatogrÃficas (AnÃlise de GÃs Dissolvido). Estes ensaios permitem estabelecer procedimentos de operaÃÃo e manutenÃÃo do equipamento e normalmente sÃo realizados simultaneamente. Esta tese de doutorado propÃe um mÃtodo que pode ser usado para extrair informaÃÃes cromatogrÃficas usando as anÃlises fÃsico-quÃmicas atravÃs de redes neurais artificiais. As anÃlises atuais das propriedades fÃsico-quÃmicas fornecem apenas diagnÃstico do estado do Ãleo, o que nÃo permite o diagnÃstico de falhas incipientes. Acredita-se que, as concessionÃrias de energia podem melhorar a confiabilidade na previsÃo de falhas incipientes a um custo menor com este mÃtodo, uma vez que apenas um ensaio à necessÃrio. Os resultados mostraram que esta estratÃgia à promissora com mÃdia de acertos em diagnÃsticos de falhas maiores que 72%. O objetivo deste trabalho à a aplicaÃÃo direta do diagnÃstico de falhas incipientes atravÃs da utilizaÃÃo de propriedades fÃsico-quÃmicas, sem a necessidade de fazer uma cromatografia do Ãleo.
id UFC_35f198d2c2a7d4f1bad40c3fd3fcfaec
oai_identifier_str oai:www.teses.ufc.br:6342
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases DissolvidosDiagnosis of incipient faults through of physicochemical properties of the insulating oil in power transformers as an alternative method to the dissolved gases analysis.2013-01-15OtacÃlio da Mota Almeida26310112368http://lattes.cnpq.br/1721353262824215 61468177320http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4221895Z9Fabio Rocha BarbosaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBR Redes neurais AnÃlise de gÃs dissolvido Engenharia elÃtricaTransformadores elÃtricosPower transformer Fault diagnosis Dissolved gas-in-oil analysis (DGA) physico-chemical properties Neural networksSISTEMAS ELETRICOS DE POTENCIAO diagnÃstico de falhas incipientes em transformadores de potÃncia imersos em Ãleo està diretamente relacionado à avaliaÃÃo das condiÃÃes do sistema de isolamento. Este estudo aborda a relaÃÃo entre os gases dissolvidos no Ãleo e a qualidade do Ãleo mineral isolante utilizado em transformadores de potÃncia. As redes neurais artificiais sÃo utilizadas na abordagem da avaliaÃÃo das condiÃÃes operacionais do Ãleo isolante em transformadores de potÃncia, que à caracterizada por um comportamento dinÃmico nÃo-linear. As condiÃÃes de operaÃÃo e a integridade do sistema de isolamento de um transformador de potÃncia podem ser inferidas atravÃs das anÃlises fÃsico-quÃmicas e cromatogrÃficas (AnÃlise de GÃs Dissolvido). Estes ensaios permitem estabelecer procedimentos de operaÃÃo e manutenÃÃo do equipamento e normalmente sÃo realizados simultaneamente. Esta tese de doutorado propÃe um mÃtodo que pode ser usado para extrair informaÃÃes cromatogrÃficas usando as anÃlises fÃsico-quÃmicas atravÃs de redes neurais artificiais. As anÃlises atuais das propriedades fÃsico-quÃmicas fornecem apenas diagnÃstico do estado do Ãleo, o que nÃo permite o diagnÃstico de falhas incipientes. Acredita-se que, as concessionÃrias de energia podem melhorar a confiabilidade na previsÃo de falhas incipientes a um custo menor com este mÃtodo, uma vez que apenas um ensaio à necessÃrio. Os resultados mostraram que esta estratÃgia à promissora com mÃdia de acertos em diagnÃsticos de falhas maiores que 72%. O objetivo deste trabalho à a aplicaÃÃo direta do diagnÃstico de falhas incipientes atravÃs da utilizaÃÃo de propriedades fÃsico-quÃmicas, sem a necessidade de fazer uma cromatografia do Ãleo.The diagnosis of incipient fault in power transformers immerses in oil are directly related to the assessment of the isolation system conditions. This search is about the relationship between dissolved gases and the quality of the insulating mineral oil used in power transformers. Artificial Neural Networks are used to approach operational conditions assessment issue of the insulating oil in power transformers, which is characterized by a nonlinear dynamic behavior. The operation conditions and integrity of a power transformer can be inferred by analysis of physicochemical and chromatographic (DGA â Dissolved Gas Analysis) profiles of the isolating oil. This tests allow establishing procedures for operating and maintaining the equipment and usually are performed simultaneously. This work proposes a method that can be used to extract chromatographic information using physicochemical analysis through Artificial Neural Networks. The present analysis of physicochemical properties only provide a diagnostic tool for the oil quality, which does not allow the diagnosis of incipient faults. ItÂs believed that, the power utilities could improve reliability in the prediction of incipient failures at a lower cost with this method, since only one test is required. The results show this strategy might be promising with an average accuracy for diagnosis of faults greater than 72%. The purpose of this work is the direct implementation of the diagnosis of incipient faults through the use of physicochemical properties without the need to make an oil chromatography.CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9189application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:22:16Zmail@mail.com -
dc.title.pt.fl_str_mv DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
dc.title.alternative.en.fl_str_mv Diagnosis of incipient faults through of physicochemical properties of the insulating oil in power transformers as an alternative method to the dissolved gases analysis.
title DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
spellingShingle DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
Fabio Rocha Barbosa
Redes neurais
AnÃlise de gÃs dissolvido
Engenharia elÃtrica
Transformadores elÃtricos
Power transformer
Fault diagnosis
Dissolved gas-in-oil analysis (DGA)
physico-chemical properties
Neural networks
SISTEMAS ELETRICOS DE POTENCIA
title_short DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
title_full DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
title_fullStr DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
title_full_unstemmed DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
title_sort DiagnÃstico de Falhas Incipientes a Partir das Propriedades FÃsico-QuÃmicas do Ãleo Isolantes em Transformadores de PotÃncia Como MÃtodo Alternativo à AnÃlise de Gases Dissolvidos
author Fabio Rocha Barbosa
author_facet Fabio Rocha Barbosa
author_role author
dc.contributor.advisor1.fl_str_mv OtacÃlio da Mota Almeida
dc.contributor.advisor1ID.fl_str_mv 26310112368
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1721353262824215
dc.contributor.authorID.fl_str_mv 61468177320
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4221895Z9
dc.contributor.author.fl_str_mv Fabio Rocha Barbosa
contributor_str_mv OtacÃlio da Mota Almeida
dc.subject.por.fl_str_mv Redes neurais
AnÃlise de gÃs dissolvido
Engenharia elÃtrica
Transformadores elÃtricos
topic Redes neurais
AnÃlise de gÃs dissolvido
Engenharia elÃtrica
Transformadores elÃtricos
Power transformer
Fault diagnosis
Dissolved gas-in-oil analysis (DGA)
physico-chemical properties
Neural networks
SISTEMAS ELETRICOS DE POTENCIA
dc.subject.eng.fl_str_mv Power transformer
Fault diagnosis
Dissolved gas-in-oil analysis (DGA)
physico-chemical properties
Neural networks
dc.subject.cnpq.fl_str_mv SISTEMAS ELETRICOS DE POTENCIA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv O diagnÃstico de falhas incipientes em transformadores de potÃncia imersos em Ãleo està diretamente relacionado à avaliaÃÃo das condiÃÃes do sistema de isolamento. Este estudo aborda a relaÃÃo entre os gases dissolvidos no Ãleo e a qualidade do Ãleo mineral isolante utilizado em transformadores de potÃncia. As redes neurais artificiais sÃo utilizadas na abordagem da avaliaÃÃo das condiÃÃes operacionais do Ãleo isolante em transformadores de potÃncia, que à caracterizada por um comportamento dinÃmico nÃo-linear. As condiÃÃes de operaÃÃo e a integridade do sistema de isolamento de um transformador de potÃncia podem ser inferidas atravÃs das anÃlises fÃsico-quÃmicas e cromatogrÃficas (AnÃlise de GÃs Dissolvido). Estes ensaios permitem estabelecer procedimentos de operaÃÃo e manutenÃÃo do equipamento e normalmente sÃo realizados simultaneamente. Esta tese de doutorado propÃe um mÃtodo que pode ser usado para extrair informaÃÃes cromatogrÃficas usando as anÃlises fÃsico-quÃmicas atravÃs de redes neurais artificiais. As anÃlises atuais das propriedades fÃsico-quÃmicas fornecem apenas diagnÃstico do estado do Ãleo, o que nÃo permite o diagnÃstico de falhas incipientes. Acredita-se que, as concessionÃrias de energia podem melhorar a confiabilidade na previsÃo de falhas incipientes a um custo menor com este mÃtodo, uma vez que apenas um ensaio à necessÃrio. Os resultados mostraram que esta estratÃgia à promissora com mÃdia de acertos em diagnÃsticos de falhas maiores que 72%. O objetivo deste trabalho à a aplicaÃÃo direta do diagnÃstico de falhas incipientes atravÃs da utilizaÃÃo de propriedades fÃsico-quÃmicas, sem a necessidade de fazer uma cromatografia do Ãleo.
dc.description.abstract.eng.fl_txt_mv The diagnosis of incipient fault in power transformers immerses in oil are directly related to the assessment of the isolation system conditions. This search is about the relationship between dissolved gases and the quality of the insulating mineral oil used in power transformers. Artificial Neural Networks are used to approach operational conditions assessment issue of the insulating oil in power transformers, which is characterized by a nonlinear dynamic behavior. The operation conditions and integrity of a power transformer can be inferred by analysis of physicochemical and chromatographic (DGA â Dissolved Gas Analysis) profiles of the isolating oil. This tests allow establishing procedures for operating and maintaining the equipment and usually are performed simultaneously. This work proposes a method that can be used to extract chromatographic information using physicochemical analysis through Artificial Neural Networks. The present analysis of physicochemical properties only provide a diagnostic tool for the oil quality, which does not allow the diagnosis of incipient faults. ItÂs believed that, the power utilities could improve reliability in the prediction of incipient failures at a lower cost with this method, since only one test is required. The results show this strategy might be promising with an average accuracy for diagnosis of faults greater than 72%. The purpose of this work is the direct implementation of the diagnosis of incipient faults through the use of physicochemical properties without the need to make an oil chromatography.
description O diagnÃstico de falhas incipientes em transformadores de potÃncia imersos em Ãleo està diretamente relacionado à avaliaÃÃo das condiÃÃes do sistema de isolamento. Este estudo aborda a relaÃÃo entre os gases dissolvidos no Ãleo e a qualidade do Ãleo mineral isolante utilizado em transformadores de potÃncia. As redes neurais artificiais sÃo utilizadas na abordagem da avaliaÃÃo das condiÃÃes operacionais do Ãleo isolante em transformadores de potÃncia, que à caracterizada por um comportamento dinÃmico nÃo-linear. As condiÃÃes de operaÃÃo e a integridade do sistema de isolamento de um transformador de potÃncia podem ser inferidas atravÃs das anÃlises fÃsico-quÃmicas e cromatogrÃficas (AnÃlise de GÃs Dissolvido). Estes ensaios permitem estabelecer procedimentos de operaÃÃo e manutenÃÃo do equipamento e normalmente sÃo realizados simultaneamente. Esta tese de doutorado propÃe um mÃtodo que pode ser usado para extrair informaÃÃes cromatogrÃficas usando as anÃlises fÃsico-quÃmicas atravÃs de redes neurais artificiais. As anÃlises atuais das propriedades fÃsico-quÃmicas fornecem apenas diagnÃstico do estado do Ãleo, o que nÃo permite o diagnÃstico de falhas incipientes. Acredita-se que, as concessionÃrias de energia podem melhorar a confiabilidade na previsÃo de falhas incipientes a um custo menor com este mÃtodo, uma vez que apenas um ensaio à necessÃrio. Os resultados mostraram que esta estratÃgia à promissora com mÃdia de acertos em diagnÃsticos de falhas maiores que 72%. O objetivo deste trabalho à a aplicaÃÃo direta do diagnÃstico de falhas incipientes atravÃs da utilizaÃÃo de propriedades fÃsico-quÃmicas, sem a necessidade de fazer uma cromatografia do Ãleo.
publishDate 2013
dc.date.issued.fl_str_mv 2013-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9189
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9189
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295169716420608