AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais

Detalhes bibliográficos
Autor(a) principal: Marcel Coelho Andrade
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8258
Resumo: O monitoramento do carregamento de componentes elÃtricos constitui-se em um aspecto de grande importÃncia para qualquer sistema de potÃncia, pois a partir dele podem ser observadas as condiÃÃes de seguranÃa dos seus componentes. O presente trabalho propÃe um mÃtodo computacional baseado em Redes Neurais Artificiais para monitorar o carregamento de componentes elÃtricos do sistema de distribuiÃÃo de energia, como transformadores, alimentadores e linhas de subtransmissÃo. A partir dos dados colhidos dos medidores das subestaÃÃes, contendo os valores de corrente do componente considerado, sÃo realizadas duas anÃlises: com transferÃncia de carga e sem transferÃncia de carga. Desta maneira, objetiva-se determinar os valores mÃximos de corrente nas duas situaÃÃes para o correspondente transformador, alimentador, ou linha de subtransmissÃo analisada. Busca-se entÃo, obter o seu carregamento mÃximo em ambos os casos e a partir desses valores, determinar se o componente està ou nÃo operando em boas condiÃÃes de seguranÃa. O valor mÃximo de corrente com transferÃncia de carga à simples de ser obtido, pois consiste apenas no valor mÃximo dos dados de corrente sem qualquer tipo de anÃlise mais aprofundada. PorÃm, o valor mÃximo de corrente sem transferÃncia de carga à bastante complexo de ser determinado, pois as condiÃÃes atÃpicas dos dados devem ser eliminadas. Desta forma, um mÃtodo empregando Redes Neurais Artificiais foi desenvolvido para obter este valor de corrente para os componentes analisados. Os resultados se mostraram bem prÃximos dos valores reais, comprovando a eficÃcia do mÃtodo. Finalmente, pode ser concluÃdo que o monitoramento à perfeitamente possÃvel de ser realizado, possibilitando um maior controle sobre os carregamentos, evitando danos tanto ao sistema de distribuiÃÃo, como ao sistema de potÃncia como um todo.
id UFC_fb94a067a6a3e4a21a2a9dce2f680e75
oai_identifier_str oai:www.teses.ufc.br:5794
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais ArtificiaisAnalysis of the subtransmission and distribution systems loading using Artificial Neural Networks2012-08-09Francisco KlÃber de AraÃjo Lima3434049134900044177399http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4449290J4Marcel Coelho AndradeUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBR Engenharia elÃtricaDistribuiÃÃo do poder elÃtrico Redes neurais Energia elÃtricaArtificial Neural Networks, Distribution systems, Power systems, Percentil statistical functionSISTEMAS ELETRICOS DE POTENCIAO monitoramento do carregamento de componentes elÃtricos constitui-se em um aspecto de grande importÃncia para qualquer sistema de potÃncia, pois a partir dele podem ser observadas as condiÃÃes de seguranÃa dos seus componentes. O presente trabalho propÃe um mÃtodo computacional baseado em Redes Neurais Artificiais para monitorar o carregamento de componentes elÃtricos do sistema de distribuiÃÃo de energia, como transformadores, alimentadores e linhas de subtransmissÃo. A partir dos dados colhidos dos medidores das subestaÃÃes, contendo os valores de corrente do componente considerado, sÃo realizadas duas anÃlises: com transferÃncia de carga e sem transferÃncia de carga. Desta maneira, objetiva-se determinar os valores mÃximos de corrente nas duas situaÃÃes para o correspondente transformador, alimentador, ou linha de subtransmissÃo analisada. Busca-se entÃo, obter o seu carregamento mÃximo em ambos os casos e a partir desses valores, determinar se o componente està ou nÃo operando em boas condiÃÃes de seguranÃa. O valor mÃximo de corrente com transferÃncia de carga à simples de ser obtido, pois consiste apenas no valor mÃximo dos dados de corrente sem qualquer tipo de anÃlise mais aprofundada. PorÃm, o valor mÃximo de corrente sem transferÃncia de carga à bastante complexo de ser determinado, pois as condiÃÃes atÃpicas dos dados devem ser eliminadas. Desta forma, um mÃtodo empregando Redes Neurais Artificiais foi desenvolvido para obter este valor de corrente para os componentes analisados. Os resultados se mostraram bem prÃximos dos valores reais, comprovando a eficÃcia do mÃtodo. Finalmente, pode ser concluÃdo que o monitoramento à perfeitamente possÃvel de ser realizado, possibilitando um maior controle sobre os carregamentos, evitando danos tanto ao sistema de distribuiÃÃo, como ao sistema de potÃncia como um todo.The monitoring of the electrical components loading is an aspect of great importance to any power system, since the components safety conditions can be observed from it. The present study proposes a computational method based on Artificial Neural Networks to monitor the electrical components loading of the power distribution system, as transformers, feeders and subtransmission lines. Based on the data collected from the substations meters, containing the electric current values of the considered component, two analyses are done: with load transfer and without load transfer. Thus, the aim is to determine the current maximum values in both situations to the corresponding transformer, feeder, or subtransmission line analyzed. Then it is sought to obtain the maximum loading in both cases and, from these values, to determinate whether or not the component is operating in good safety conditions. The maximum current with load transfer is simple to obtain, because it consists only in the maximum value of electrical current data without any deeper analysis. However, the maximum current without load transfer is very complex to be determined, once the atypical conditions of the data must be eliminated. Thereby, a method using Artificial Neural Networks was developed to estimate the values of the current to the analyzed components. The results were very close to the real ones, proving the effectiveness of the method. Finally, it can be concluded that the monitoring is perfectly possible to be performed, allowing greater control over the loadings, avoiding damages to both the distribution system and the power system as a whole.FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8258application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:21:19Zmail@mail.com -
dc.title.pt.fl_str_mv AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
dc.title.alternative.en.fl_str_mv Analysis of the subtransmission and distribution systems loading using Artificial Neural Networks
title AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
spellingShingle AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
Marcel Coelho Andrade
Engenharia elÃtrica
DistribuiÃÃo do poder elÃtrico
Redes neurais
Energia elÃtrica
Artificial Neural Networks, Distribution systems, Power systems, Percentil statistical function
SISTEMAS ELETRICOS DE POTENCIA
title_short AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
title_full AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
title_fullStr AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
title_full_unstemmed AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
title_sort AnÃlise do Carregamento de Sistemas de SubtransmissÃo e de DistribuiÃÃo Usando Redes Neurais Artificiais
author Marcel Coelho Andrade
author_facet Marcel Coelho Andrade
author_role author
dc.contributor.advisor1.fl_str_mv Francisco KlÃber de AraÃjo Lima
dc.contributor.advisor1ID.fl_str_mv 34340491349
dc.contributor.authorID.fl_str_mv 00044177399
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4449290J4
dc.contributor.author.fl_str_mv Marcel Coelho Andrade
contributor_str_mv Francisco KlÃber de AraÃjo Lima
dc.subject.por.fl_str_mv Engenharia elÃtrica
DistribuiÃÃo do poder elÃtrico
Redes neurais
Energia elÃtrica
topic Engenharia elÃtrica
DistribuiÃÃo do poder elÃtrico
Redes neurais
Energia elÃtrica
Artificial Neural Networks, Distribution systems, Power systems, Percentil statistical function
SISTEMAS ELETRICOS DE POTENCIA
dc.subject.eng.fl_str_mv Artificial Neural Networks, Distribution systems, Power systems, Percentil statistical function
dc.subject.cnpq.fl_str_mv SISTEMAS ELETRICOS DE POTENCIA
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv O monitoramento do carregamento de componentes elÃtricos constitui-se em um aspecto de grande importÃncia para qualquer sistema de potÃncia, pois a partir dele podem ser observadas as condiÃÃes de seguranÃa dos seus componentes. O presente trabalho propÃe um mÃtodo computacional baseado em Redes Neurais Artificiais para monitorar o carregamento de componentes elÃtricos do sistema de distribuiÃÃo de energia, como transformadores, alimentadores e linhas de subtransmissÃo. A partir dos dados colhidos dos medidores das subestaÃÃes, contendo os valores de corrente do componente considerado, sÃo realizadas duas anÃlises: com transferÃncia de carga e sem transferÃncia de carga. Desta maneira, objetiva-se determinar os valores mÃximos de corrente nas duas situaÃÃes para o correspondente transformador, alimentador, ou linha de subtransmissÃo analisada. Busca-se entÃo, obter o seu carregamento mÃximo em ambos os casos e a partir desses valores, determinar se o componente està ou nÃo operando em boas condiÃÃes de seguranÃa. O valor mÃximo de corrente com transferÃncia de carga à simples de ser obtido, pois consiste apenas no valor mÃximo dos dados de corrente sem qualquer tipo de anÃlise mais aprofundada. PorÃm, o valor mÃximo de corrente sem transferÃncia de carga à bastante complexo de ser determinado, pois as condiÃÃes atÃpicas dos dados devem ser eliminadas. Desta forma, um mÃtodo empregando Redes Neurais Artificiais foi desenvolvido para obter este valor de corrente para os componentes analisados. Os resultados se mostraram bem prÃximos dos valores reais, comprovando a eficÃcia do mÃtodo. Finalmente, pode ser concluÃdo que o monitoramento à perfeitamente possÃvel de ser realizado, possibilitando um maior controle sobre os carregamentos, evitando danos tanto ao sistema de distribuiÃÃo, como ao sistema de potÃncia como um todo.
dc.description.abstract.eng.fl_txt_mv The monitoring of the electrical components loading is an aspect of great importance to any power system, since the components safety conditions can be observed from it. The present study proposes a computational method based on Artificial Neural Networks to monitor the electrical components loading of the power distribution system, as transformers, feeders and subtransmission lines. Based on the data collected from the substations meters, containing the electric current values of the considered component, two analyses are done: with load transfer and without load transfer. Thus, the aim is to determine the current maximum values in both situations to the corresponding transformer, feeder, or subtransmission line analyzed. Then it is sought to obtain the maximum loading in both cases and, from these values, to determinate whether or not the component is operating in good safety conditions. The maximum current with load transfer is simple to obtain, because it consists only in the maximum value of electrical current data without any deeper analysis. However, the maximum current without load transfer is very complex to be determined, once the atypical conditions of the data must be eliminated. Thereby, a method using Artificial Neural Networks was developed to estimate the values of the current to the analyzed components. The results were very close to the real ones, proving the effectiveness of the method. Finally, it can be concluded that the monitoring is perfectly possible to be performed, allowing greater control over the loadings, avoiding damages to both the distribution system and the power system as a whole.
description O monitoramento do carregamento de componentes elÃtricos constitui-se em um aspecto de grande importÃncia para qualquer sistema de potÃncia, pois a partir dele podem ser observadas as condiÃÃes de seguranÃa dos seus componentes. O presente trabalho propÃe um mÃtodo computacional baseado em Redes Neurais Artificiais para monitorar o carregamento de componentes elÃtricos do sistema de distribuiÃÃo de energia, como transformadores, alimentadores e linhas de subtransmissÃo. A partir dos dados colhidos dos medidores das subestaÃÃes, contendo os valores de corrente do componente considerado, sÃo realizadas duas anÃlises: com transferÃncia de carga e sem transferÃncia de carga. Desta maneira, objetiva-se determinar os valores mÃximos de corrente nas duas situaÃÃes para o correspondente transformador, alimentador, ou linha de subtransmissÃo analisada. Busca-se entÃo, obter o seu carregamento mÃximo em ambos os casos e a partir desses valores, determinar se o componente està ou nÃo operando em boas condiÃÃes de seguranÃa. O valor mÃximo de corrente com transferÃncia de carga à simples de ser obtido, pois consiste apenas no valor mÃximo dos dados de corrente sem qualquer tipo de anÃlise mais aprofundada. PorÃm, o valor mÃximo de corrente sem transferÃncia de carga à bastante complexo de ser determinado, pois as condiÃÃes atÃpicas dos dados devem ser eliminadas. Desta forma, um mÃtodo empregando Redes Neurais Artificiais foi desenvolvido para obter este valor de corrente para os componentes analisados. Os resultados se mostraram bem prÃximos dos valores reais, comprovando a eficÃcia do mÃtodo. Finalmente, pode ser concluÃdo que o monitoramento à perfeitamente possÃvel de ser realizado, possibilitando um maior controle sobre os carregamentos, evitando danos tanto ao sistema de distribuiÃÃo, como ao sistema de potÃncia como um todo.
publishDate 2012
dc.date.issued.fl_str_mv 2012-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8258
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8258
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295163683962880