MIMO array capacity optimization using a genetic algorithm

Detalhes bibliográficos
Autor(a) principal: Manuel OsÃrio Binelo
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9913
Resumo: One challenging task in multiple input multiple output (MIMO) systems design is to accommodate the multiple antennas in the mobile device without compromising the system capacity, due to spatial and electrical constraints. In this work, an experimental MIMO wireless channel characterization in an outdoor environment is performed in order to study the different factors that affect MIMO capacity. The data acquired during wideband channel measurement campaigns made in Stockholm, Sweden, were used in order to predict the impact of direction of arrival (DOA) distribution and polarization diversity on the channel capacity, choosing specific measurement routes and locations as well as different MIMO antenna array configurations. This thesis proposes a genetic algorithm (GA) to obtain the position and orientation of each MIMO array antenna that maximizes the ergodic capacity for a given propagation scenario. The simulations of the GA use the characterized experimental channel model, as a case of study, in order to evaluate the impact of different characteristics of the propagation environment in the capacity. Based on an interface between the antenna model and the propagation channel model, the ergodic capacity is considered as the objective function of the MIMO array optimization. Simulation results corroborate the importance of polarization and antenna pattern diversities for MIMO in small terminals. The results also show that the electromagnetic coupling effect can be exploited by the optimizer in order to decrease signal correlation and increase MIMO capacity. A comparison among uniform linear array (ULA), uniform circular array (UCA) and the GA-optimized array is also carried out, showing that the topology given by the optimizer is superior to that of the standard ULA and UCA arrays for the considered propagation channel. This work also presents a method for optimizing the capacity of MIMO antenna array systems with antenna selection, evolving the antenna array best suited for antenna selection in a given scenario. As a result of the proposed GA optimizer, different array configurations were obtained for cases with and without antenna selection, showing that true polarization diversity (TPD) schemes are particularly suited for antenna selection systems.
id UFC_4fc7754609a7aa0264e6c007626b91c6
oai_identifier_str oai:www.teses.ufc.br:6658
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMIMO array capacity optimization using a genetic algorithmOtimizaÃÃo da capacidade de arranjos MIMO usando algoritmo genÃtico2013-04-05Francisco Rodrigo Porto Cavalcanti42250153353http://lattes.cnpq.br/535907393511035700275504000http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=C229348Manuel OsÃrio BineloUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBR Arranjos - OtimizaÃÃo Algoritmos genÃticosTeleinformÃticaMIMO Genetic Algorithm Capacity OptimizationENGENHARIA ELETRICAOne challenging task in multiple input multiple output (MIMO) systems design is to accommodate the multiple antennas in the mobile device without compromising the system capacity, due to spatial and electrical constraints. In this work, an experimental MIMO wireless channel characterization in an outdoor environment is performed in order to study the different factors that affect MIMO capacity. The data acquired during wideband channel measurement campaigns made in Stockholm, Sweden, were used in order to predict the impact of direction of arrival (DOA) distribution and polarization diversity on the channel capacity, choosing specific measurement routes and locations as well as different MIMO antenna array configurations. This thesis proposes a genetic algorithm (GA) to obtain the position and orientation of each MIMO array antenna that maximizes the ergodic capacity for a given propagation scenario. The simulations of the GA use the characterized experimental channel model, as a case of study, in order to evaluate the impact of different characteristics of the propagation environment in the capacity. Based on an interface between the antenna model and the propagation channel model, the ergodic capacity is considered as the objective function of the MIMO array optimization. Simulation results corroborate the importance of polarization and antenna pattern diversities for MIMO in small terminals. The results also show that the electromagnetic coupling effect can be exploited by the optimizer in order to decrease signal correlation and increase MIMO capacity. A comparison among uniform linear array (ULA), uniform circular array (UCA) and the GA-optimized array is also carried out, showing that the topology given by the optimizer is superior to that of the standard ULA and UCA arrays for the considered propagation channel. This work also presents a method for optimizing the capacity of MIMO antenna array systems with antenna selection, evolving the antenna array best suited for antenna selection in a given scenario. As a result of the proposed GA optimizer, different array configurations were obtained for cases with and without antenna selection, showing that true polarization diversity (TPD) schemes are particularly suited for antenna selection systems.Uma questÃo bastante complicada no projeto de sistemas MIMO à acomodar as mÃltiplas antenas no dispositivo mÃvel sem comprometer a capacidade do sistema, devido a restriÃÃes elÃtricas e de espaÃo. Neste trabalho à desenvolvida a caracterizaÃÃo de um canal MIMO sem fio em ambiente externo para o estudo dos diferentes fatores que afetam a capacidade de comunicaÃÃo. Os dados adquiridos em campanhas de mediÃÃo feitas em Estocolmo foram utilizados para modelar o impacto da distribuiÃÃo de DOA e da diversidade de polarizaÃÃo na capacidade do canal, escolhendo rotas especÃficas de medida e diferentes configuraÃÃes de arranjos de antena. Essa tese propÃe um algoritmo genÃtico para obter a posiÃÃo e orientaÃÃo de cada antena do arranjo MIMO que maximizem a capacidade ergÃtica para um dado cenÃrio de propagaÃÃo. Baseando-se em uma interface entre o modelo de antena e o modelo de propagaÃÃo do canal, a capacidade ergÃdica à usada como funÃÃo objetivo da otimizaÃÃo do arranjo MIMO. Os resultados das simulaÃÃo indicam a importÃncia das diversidades de polarizaÃÃo e de padrÃo de antena para sistemas MIMO em terminais de pequeno porte. Os resultados tambÃm mostram que o efeito do acoplamento eletromagnÃtico pode ser explorado pelo otimizador para diminuir a correlaÃÃo do sinal aumentando assim a capacidade MIMO. TambÃm à feita uma comparaÃÃo entre arranjo linear uniforme(ULA), arranjo circular uniforme(UCA) e um arranjo otimizado pelo algoritmo genÃtico, mostrando que a topologia resultante do algoritmo genÃtico à superior tanto a ao arranjo ULA quanto ao arranjo UCA, para o canal de propagaÃÃo considerado. Este trabalho tambÃm apresenta um mÃtodo para otimizaÃÃo da capacidade de sistemas MIMO com seleÃÃo de antena, evoluindo um arranjo de antenas melhor adaptado para a seleÃÃo de antenas em um dado cenÃrio de propagaÃÃo. Como resultado do mÃtodo proposto, diferentes configuraÃÃes de arranjos foram obtidas para o caso com e sem seleÃÃo de antenas, mostrando que sistemas de diversidade de polarizaÃÃo(TPD) sÃo particularmente adequados para sistemas com seleÃÃo de antena.nÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9913application/pdfinfo:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:22:54Zmail@mail.com -
dc.title.en.fl_str_mv MIMO array capacity optimization using a genetic algorithm
dc.title.alternative.pt.fl_str_mv OtimizaÃÃo da capacidade de arranjos MIMO usando algoritmo genÃtico
title MIMO array capacity optimization using a genetic algorithm
spellingShingle MIMO array capacity optimization using a genetic algorithm
Manuel OsÃrio Binelo
Arranjos - OtimizaÃÃo
Algoritmos genÃticos
TeleinformÃtica
MIMO
Genetic Algorithm
Capacity Optimization
ENGENHARIA ELETRICA
title_short MIMO array capacity optimization using a genetic algorithm
title_full MIMO array capacity optimization using a genetic algorithm
title_fullStr MIMO array capacity optimization using a genetic algorithm
title_full_unstemmed MIMO array capacity optimization using a genetic algorithm
title_sort MIMO array capacity optimization using a genetic algorithm
author Manuel OsÃrio Binelo
author_facet Manuel OsÃrio Binelo
author_role author
dc.contributor.advisor1.fl_str_mv Francisco Rodrigo Porto Cavalcanti
dc.contributor.advisor1ID.fl_str_mv 42250153353
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5359073935110357
dc.contributor.authorID.fl_str_mv 00275504000
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=C229348
dc.contributor.author.fl_str_mv Manuel OsÃrio Binelo
contributor_str_mv Francisco Rodrigo Porto Cavalcanti
dc.subject.por.fl_str_mv Arranjos - OtimizaÃÃo
Algoritmos genÃticos
TeleinformÃtica
topic Arranjos - OtimizaÃÃo
Algoritmos genÃticos
TeleinformÃtica
MIMO
Genetic Algorithm
Capacity Optimization
ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv MIMO
Genetic Algorithm
Capacity Optimization
dc.subject.cnpq.fl_str_mv ENGENHARIA ELETRICA
dc.description.sponsorship.fl_txt_mv nÃo hÃ
dc.description.abstract.por.fl_txt_mv One challenging task in multiple input multiple output (MIMO) systems design is to accommodate the multiple antennas in the mobile device without compromising the system capacity, due to spatial and electrical constraints. In this work, an experimental MIMO wireless channel characterization in an outdoor environment is performed in order to study the different factors that affect MIMO capacity. The data acquired during wideband channel measurement campaigns made in Stockholm, Sweden, were used in order to predict the impact of direction of arrival (DOA) distribution and polarization diversity on the channel capacity, choosing specific measurement routes and locations as well as different MIMO antenna array configurations. This thesis proposes a genetic algorithm (GA) to obtain the position and orientation of each MIMO array antenna that maximizes the ergodic capacity for a given propagation scenario. The simulations of the GA use the characterized experimental channel model, as a case of study, in order to evaluate the impact of different characteristics of the propagation environment in the capacity. Based on an interface between the antenna model and the propagation channel model, the ergodic capacity is considered as the objective function of the MIMO array optimization. Simulation results corroborate the importance of polarization and antenna pattern diversities for MIMO in small terminals. The results also show that the electromagnetic coupling effect can be exploited by the optimizer in order to decrease signal correlation and increase MIMO capacity. A comparison among uniform linear array (ULA), uniform circular array (UCA) and the GA-optimized array is also carried out, showing that the topology given by the optimizer is superior to that of the standard ULA and UCA arrays for the considered propagation channel. This work also presents a method for optimizing the capacity of MIMO antenna array systems with antenna selection, evolving the antenna array best suited for antenna selection in a given scenario. As a result of the proposed GA optimizer, different array configurations were obtained for cases with and without antenna selection, showing that true polarization diversity (TPD) schemes are particularly suited for antenna selection systems.
Uma questÃo bastante complicada no projeto de sistemas MIMO à acomodar as mÃltiplas antenas no dispositivo mÃvel sem comprometer a capacidade do sistema, devido a restriÃÃes elÃtricas e de espaÃo. Neste trabalho à desenvolvida a caracterizaÃÃo de um canal MIMO sem fio em ambiente externo para o estudo dos diferentes fatores que afetam a capacidade de comunicaÃÃo. Os dados adquiridos em campanhas de mediÃÃo feitas em Estocolmo foram utilizados para modelar o impacto da distribuiÃÃo de DOA e da diversidade de polarizaÃÃo na capacidade do canal, escolhendo rotas especÃficas de medida e diferentes configuraÃÃes de arranjos de antena. Essa tese propÃe um algoritmo genÃtico para obter a posiÃÃo e orientaÃÃo de cada antena do arranjo MIMO que maximizem a capacidade ergÃtica para um dado cenÃrio de propagaÃÃo. Baseando-se em uma interface entre o modelo de antena e o modelo de propagaÃÃo do canal, a capacidade ergÃdica à usada como funÃÃo objetivo da otimizaÃÃo do arranjo MIMO. Os resultados das simulaÃÃo indicam a importÃncia das diversidades de polarizaÃÃo e de padrÃo de antena para sistemas MIMO em terminais de pequeno porte. Os resultados tambÃm mostram que o efeito do acoplamento eletromagnÃtico pode ser explorado pelo otimizador para diminuir a correlaÃÃo do sinal aumentando assim a capacidade MIMO. TambÃm à feita uma comparaÃÃo entre arranjo linear uniforme(ULA), arranjo circular uniforme(UCA) e um arranjo otimizado pelo algoritmo genÃtico, mostrando que a topologia resultante do algoritmo genÃtico à superior tanto a ao arranjo ULA quanto ao arranjo UCA, para o canal de propagaÃÃo considerado. Este trabalho tambÃm apresenta um mÃtodo para otimizaÃÃo da capacidade de sistemas MIMO com seleÃÃo de antena, evoluindo um arranjo de antenas melhor adaptado para a seleÃÃo de antenas em um dado cenÃrio de propagaÃÃo. Como resultado do mÃtodo proposto, diferentes configuraÃÃes de arranjos foram obtidas para o caso com e sem seleÃÃo de antenas, mostrando que sistemas de diversidade de polarizaÃÃo(TPD) sÃo particularmente adequados para sistemas com seleÃÃo de antena.
description One challenging task in multiple input multiple output (MIMO) systems design is to accommodate the multiple antennas in the mobile device without compromising the system capacity, due to spatial and electrical constraints. In this work, an experimental MIMO wireless channel characterization in an outdoor environment is performed in order to study the different factors that affect MIMO capacity. The data acquired during wideband channel measurement campaigns made in Stockholm, Sweden, were used in order to predict the impact of direction of arrival (DOA) distribution and polarization diversity on the channel capacity, choosing specific measurement routes and locations as well as different MIMO antenna array configurations. This thesis proposes a genetic algorithm (GA) to obtain the position and orientation of each MIMO array antenna that maximizes the ergodic capacity for a given propagation scenario. The simulations of the GA use the characterized experimental channel model, as a case of study, in order to evaluate the impact of different characteristics of the propagation environment in the capacity. Based on an interface between the antenna model and the propagation channel model, the ergodic capacity is considered as the objective function of the MIMO array optimization. Simulation results corroborate the importance of polarization and antenna pattern diversities for MIMO in small terminals. The results also show that the electromagnetic coupling effect can be exploited by the optimizer in order to decrease signal correlation and increase MIMO capacity. A comparison among uniform linear array (ULA), uniform circular array (UCA) and the GA-optimized array is also carried out, showing that the topology given by the optimizer is superior to that of the standard ULA and UCA arrays for the considered propagation channel. This work also presents a method for optimizing the capacity of MIMO antenna array systems with antenna selection, evolving the antenna array best suited for antenna selection in a given scenario. As a result of the proposed GA optimizer, different array configurations were obtained for cases with and without antenna selection, showing that true polarization diversity (TPD) schemes are particularly suited for antenna selection systems.
publishDate 2013
dc.date.issued.fl_str_mv 2013-04-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9913
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9913
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295173677940736