EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante

Detalhes bibliográficos
Autor(a) principal: Carlos Alexandre Rolim Fernandes
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2041
Resumo: Este trabalho trata da proposiÃÃo de algoritmos para equalizaÃÃo cega de canais lineares e nÃao-lineares inspirados no Algoritmo do MÃdulo Constante (CMA). O CMA funciona de maneira bastante eficiente com constelaÃÃes nas quais todos os pontos possuem a mesma amplitude, como em modulaÃÃes do tipo Phase Shift Keying (PSK). Entretanto, quando os pontos da constelaÃÃo podem assumir diferentes valores de amplitudes, como em modulaÃÃes do tipo Quadrature Amplitude Modulation (QAM), o CMA e seus derivados muitas vezes nÃo funcionam de forma satisfatÃria. Desta forma, as tÃcnicas aqui propostas sÃo projetadas para melhorar a performance do CMA em termos de velocidade de convergÃncia e precisÃo, quando operando em sinais transmitidos com diversos mÃdulos, em particular para a modulaÃÃo QAM. Assim como o CMA, para possuir um bom apelo prÃtico, essas tÃcnicas devem apresentar bom compromisso entre complexidade, robustez e desempenho. Para tanto, as tÃcnicas propostas utilizam o Ãltimo sÃmbolo decidido para definir uma estimaÃÃo de raio de referÃncia para a saÃda do equalizador. De fato, esses algoritmos podem ser vistos como generalizaÃÃes do CMA e de alguns derivados do CMA para constelaÃÃes com mÃltiplos raios. A proposiÃÃo de algoritmos do tipo gradiente estocÃstico à concluÃda com o desenvolvimento de tÃcnicas originais, baseadas no CMA, para equalizaÃÃo de canais do tipo Wiener, que consiste em um filtro linear com memÃria, seguido por um filtro nÃo-linear sem memÃria. As expressÃes para a adaptaÃÃo do equalizador sÃo encontradas com o auxÃlio de uma notaÃÃo unificada para trÃs diferentes estruturas: i) um filtro de Hammerstein; ii) um filtro de Volterra diagonal; e iii) um filtro de Volterra completo. Um estudo teÃrico acerca do comportamento do principal algoritmo proposto, o Decision Directed Modulus Algorithm (DDMA) à realizado. SÃo analisadas a convergÃncia e a estabilidade do algoritmo atravÃs de uma anÃlise dos pontos de mÃnimo de sua funÃÃo custo. Outro objetivo à encontrar o valor teÃrico do Erro MÃdio QuadrÃtico MÃdio em Excesso - Excess Mean Square Error (EMSE) fornecido pelo DDMA considerando-se o caso sem ruÃdo. Ao final, à feito um estudo em que se constata que o algoritmo DDMA possui fortes ligaÃÃes com a soluÃÃo de Wiener e com o CMA. VersÃes normalizadas, bem como versÃes do tipo Recursive Least Squares (RLS), dos algoritmos do tipo gradiente estocÃstico estudados sÃo tambÃm desenvolvidas. Cada famÃlia de algoritmos estudada fie composta por quatro algoritmos com algumas propriedades interessantes e vantagens sobre as tÃcnicas clÃssicas, especialmente quando operando em sinais QAM de ordem elevada. TambÃm sÃo desenvolvidas versÃes normalizadas e do tipo RLS dos algoritmos do tipo CMA estudados para equalizaÃÃo de canais nÃo-lineares. O comportamento de todas as famÃlias de algoritmos desenvolvidos à testado atravÃs de simulaÃÃes computacionais, em que à verificado que as tÃcnicas propostas fornecem ganhos significativos em desempenho, em termos de velocidade de convergÃncia e erro residual, em relaÃÃo Ãs tÃcnicas clÃssicas.
id UFC_746170783d5c4808200f8c2f455001f7
oai_identifier_str oai:www.teses.ufc.br:1862
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisEqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constanteAutodidact and adaptive equalization of the nonlinear and linear channels using the constant module algorithm2005-08-05JoÃo CÃsar Moura Mota09152768368http://lattes.cnpq.br/3534665149331526GÃrard Favier64140245387http://lattes.cnpq.br/4292868742453389Carlos Alexandre Rolim FernandesUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBREqualizaÃÃo cega algoritmo do mÃdulo constante dirigido pela decisÃo mÃnimos quadrados recursivos algoritmos normalizados filtros nÃo-lineares.blind equalization constant modulus algorithm directed decisions recursive least squares normalized algorithms nonlinear filtersTELEINFORMATICAEste trabalho trata da proposiÃÃo de algoritmos para equalizaÃÃo cega de canais lineares e nÃao-lineares inspirados no Algoritmo do MÃdulo Constante (CMA). O CMA funciona de maneira bastante eficiente com constelaÃÃes nas quais todos os pontos possuem a mesma amplitude, como em modulaÃÃes do tipo Phase Shift Keying (PSK). Entretanto, quando os pontos da constelaÃÃo podem assumir diferentes valores de amplitudes, como em modulaÃÃes do tipo Quadrature Amplitude Modulation (QAM), o CMA e seus derivados muitas vezes nÃo funcionam de forma satisfatÃria. Desta forma, as tÃcnicas aqui propostas sÃo projetadas para melhorar a performance do CMA em termos de velocidade de convergÃncia e precisÃo, quando operando em sinais transmitidos com diversos mÃdulos, em particular para a modulaÃÃo QAM. Assim como o CMA, para possuir um bom apelo prÃtico, essas tÃcnicas devem apresentar bom compromisso entre complexidade, robustez e desempenho. Para tanto, as tÃcnicas propostas utilizam o Ãltimo sÃmbolo decidido para definir uma estimaÃÃo de raio de referÃncia para a saÃda do equalizador. De fato, esses algoritmos podem ser vistos como generalizaÃÃes do CMA e de alguns derivados do CMA para constelaÃÃes com mÃltiplos raios. A proposiÃÃo de algoritmos do tipo gradiente estocÃstico à concluÃda com o desenvolvimento de tÃcnicas originais, baseadas no CMA, para equalizaÃÃo de canais do tipo Wiener, que consiste em um filtro linear com memÃria, seguido por um filtro nÃo-linear sem memÃria. As expressÃes para a adaptaÃÃo do equalizador sÃo encontradas com o auxÃlio de uma notaÃÃo unificada para trÃs diferentes estruturas: i) um filtro de Hammerstein; ii) um filtro de Volterra diagonal; e iii) um filtro de Volterra completo. Um estudo teÃrico acerca do comportamento do principal algoritmo proposto, o Decision Directed Modulus Algorithm (DDMA) à realizado. SÃo analisadas a convergÃncia e a estabilidade do algoritmo atravÃs de uma anÃlise dos pontos de mÃnimo de sua funÃÃo custo. Outro objetivo à encontrar o valor teÃrico do Erro MÃdio QuadrÃtico MÃdio em Excesso - Excess Mean Square Error (EMSE) fornecido pelo DDMA considerando-se o caso sem ruÃdo. Ao final, à feito um estudo em que se constata que o algoritmo DDMA possui fortes ligaÃÃes com a soluÃÃo de Wiener e com o CMA. VersÃes normalizadas, bem como versÃes do tipo Recursive Least Squares (RLS), dos algoritmos do tipo gradiente estocÃstico estudados sÃo tambÃm desenvolvidas. Cada famÃlia de algoritmos estudada fie composta por quatro algoritmos com algumas propriedades interessantes e vantagens sobre as tÃcnicas clÃssicas, especialmente quando operando em sinais QAM de ordem elevada. TambÃm sÃo desenvolvidas versÃes normalizadas e do tipo RLS dos algoritmos do tipo CMA estudados para equalizaÃÃo de canais nÃo-lineares. O comportamento de todas as famÃlias de algoritmos desenvolvidos à testado atravÃs de simulaÃÃes computacionais, em que à verificado que as tÃcnicas propostas fornecem ganhos significativos em desempenho, em termos de velocidade de convergÃncia e erro residual, em relaÃÃo Ãs tÃcnicas clÃssicas.This work studies and proposes algorithms to perform blind equalization of linear and nonlinear channels inspired on the Constant Modulus Algorithm (CMA). The CMA works very well for modulations in which all points of the signal constellation have the same radius, like in Phase Shift Keying (PSK) modulations. However, when the constellation points are characterized by multiple radii, like in Quadrature Amplitude Modulation (QAM) signals, the CMA does not work properly in many situations. Thus, the techniques proposed here are designed to improve the performance of the CMA, in terms of speed of convergence and residual error, when working with signals transmitted with multiple magnitude, in particular with QAM signals. As well as for the CMA, these techniques should have a good compromise among performance, complexity and robustness. To do so, the techniques use the last decided symbol to estimate reference radius to the output of the equalizer. In fact, they can be seen as modifications of the CMA and of some of its derivatives for constellations with multiple radii. The proposition of stochastic gradient algorithms is concluded with the development of new adaptive blind techniques to equalize channels with a Wiener structure. A Wiener filter consists of a linear block with memory followed by a memoryless nonlinearity, by using the CMA. We develop expressions for the adaptation of the equalizer using a unified notation for three different equalizer filter structures: i) a Hammerstein filter, ii) a diagonal Volterra filter and iii) a Volterra filter. A theoretical analysis of the main proposed technique, the Decision Directed Modulus Algorithm (DDMA), is also done. We study the convergence and the stability of the DDMA by means of an analysis of the minima of the DDM cost function. We also develop an analytic expression for the Excess Mean Square Error (EMSE) provided by the DDMA in the noiseless case. Then, we nd some interesting relationships among the DDM, the CM and the Wiener cost functions. We also develop a class of normalized algorithms and a class of Recursive Least Squares (RLS)-type algorithms for blind equalization inspired on the CMA-based techniques studied. Each family is composed of four algorithms with desirable properties and advantages over the original CM algorithms, specially when working with high-level QAM signals. Normalized and RLS techniques for equalization of Wiener channels are also developed. The behavior of the proposed classes of algorithms discussed is tested by computational simulations. We verify that the proposed techniques provide significative gains in performance, in terms of speed of convergence and residual error, when compared to the classical algorithms.Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2041application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:15:08Zmail@mail.com -
dc.title.pt.fl_str_mv EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
dc.title.alternative.en.fl_str_mv Autodidact and adaptive equalization of the nonlinear and linear channels using the constant module algorithm
title EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
spellingShingle EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
Carlos Alexandre Rolim Fernandes
EqualizaÃÃo cega
algoritmo do mÃdulo constante
dirigido pela decisÃo
mÃnimos quadrados recursivos
algoritmos normalizados
filtros nÃo-lineares.
blind equalization
constant modulus algorithm
directed decisions
recursive least squares
normalized algorithms
nonlinear filters
TELEINFORMATICA
title_short EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
title_full EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
title_fullStr EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
title_full_unstemmed EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
title_sort EqualizaÃÃo adaptativa e autodidata de canais lineares e nÃo-lineares utilizando o algoritmo do mÃdulo constante
author Carlos Alexandre Rolim Fernandes
author_facet Carlos Alexandre Rolim Fernandes
author_role author
dc.contributor.advisor1.fl_str_mv JoÃo CÃsar Moura Mota
dc.contributor.advisor1ID.fl_str_mv 09152768368
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3534665149331526
dc.contributor.advisor-co1.fl_str_mv GÃrard Favier
dc.contributor.authorID.fl_str_mv 64140245387
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4292868742453389
dc.contributor.author.fl_str_mv Carlos Alexandre Rolim Fernandes
contributor_str_mv JoÃo CÃsar Moura Mota
GÃrard Favier
dc.subject.por.fl_str_mv EqualizaÃÃo cega
algoritmo do mÃdulo constante
dirigido pela decisÃo
mÃnimos quadrados recursivos
algoritmos normalizados
filtros nÃo-lineares.
topic EqualizaÃÃo cega
algoritmo do mÃdulo constante
dirigido pela decisÃo
mÃnimos quadrados recursivos
algoritmos normalizados
filtros nÃo-lineares.
blind equalization
constant modulus algorithm
directed decisions
recursive least squares
normalized algorithms
nonlinear filters
TELEINFORMATICA
dc.subject.eng.fl_str_mv blind equalization
constant modulus algorithm
directed decisions
recursive least squares
normalized algorithms
nonlinear filters
dc.subject.cnpq.fl_str_mv TELEINFORMATICA
dc.description.sponsorship.fl_txt_mv Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv Este trabalho trata da proposiÃÃo de algoritmos para equalizaÃÃo cega de canais lineares e nÃao-lineares inspirados no Algoritmo do MÃdulo Constante (CMA). O CMA funciona de maneira bastante eficiente com constelaÃÃes nas quais todos os pontos possuem a mesma amplitude, como em modulaÃÃes do tipo Phase Shift Keying (PSK). Entretanto, quando os pontos da constelaÃÃo podem assumir diferentes valores de amplitudes, como em modulaÃÃes do tipo Quadrature Amplitude Modulation (QAM), o CMA e seus derivados muitas vezes nÃo funcionam de forma satisfatÃria. Desta forma, as tÃcnicas aqui propostas sÃo projetadas para melhorar a performance do CMA em termos de velocidade de convergÃncia e precisÃo, quando operando em sinais transmitidos com diversos mÃdulos, em particular para a modulaÃÃo QAM. Assim como o CMA, para possuir um bom apelo prÃtico, essas tÃcnicas devem apresentar bom compromisso entre complexidade, robustez e desempenho. Para tanto, as tÃcnicas propostas utilizam o Ãltimo sÃmbolo decidido para definir uma estimaÃÃo de raio de referÃncia para a saÃda do equalizador. De fato, esses algoritmos podem ser vistos como generalizaÃÃes do CMA e de alguns derivados do CMA para constelaÃÃes com mÃltiplos raios. A proposiÃÃo de algoritmos do tipo gradiente estocÃstico à concluÃda com o desenvolvimento de tÃcnicas originais, baseadas no CMA, para equalizaÃÃo de canais do tipo Wiener, que consiste em um filtro linear com memÃria, seguido por um filtro nÃo-linear sem memÃria. As expressÃes para a adaptaÃÃo do equalizador sÃo encontradas com o auxÃlio de uma notaÃÃo unificada para trÃs diferentes estruturas: i) um filtro de Hammerstein; ii) um filtro de Volterra diagonal; e iii) um filtro de Volterra completo. Um estudo teÃrico acerca do comportamento do principal algoritmo proposto, o Decision Directed Modulus Algorithm (DDMA) à realizado. SÃo analisadas a convergÃncia e a estabilidade do algoritmo atravÃs de uma anÃlise dos pontos de mÃnimo de sua funÃÃo custo. Outro objetivo à encontrar o valor teÃrico do Erro MÃdio QuadrÃtico MÃdio em Excesso - Excess Mean Square Error (EMSE) fornecido pelo DDMA considerando-se o caso sem ruÃdo. Ao final, à feito um estudo em que se constata que o algoritmo DDMA possui fortes ligaÃÃes com a soluÃÃo de Wiener e com o CMA. VersÃes normalizadas, bem como versÃes do tipo Recursive Least Squares (RLS), dos algoritmos do tipo gradiente estocÃstico estudados sÃo tambÃm desenvolvidas. Cada famÃlia de algoritmos estudada fie composta por quatro algoritmos com algumas propriedades interessantes e vantagens sobre as tÃcnicas clÃssicas, especialmente quando operando em sinais QAM de ordem elevada. TambÃm sÃo desenvolvidas versÃes normalizadas e do tipo RLS dos algoritmos do tipo CMA estudados para equalizaÃÃo de canais nÃo-lineares. O comportamento de todas as famÃlias de algoritmos desenvolvidos à testado atravÃs de simulaÃÃes computacionais, em que à verificado que as tÃcnicas propostas fornecem ganhos significativos em desempenho, em termos de velocidade de convergÃncia e erro residual, em relaÃÃo Ãs tÃcnicas clÃssicas.
dc.description.abstract.eng.fl_txt_mv This work studies and proposes algorithms to perform blind equalization of linear and nonlinear channels inspired on the Constant Modulus Algorithm (CMA). The CMA works very well for modulations in which all points of the signal constellation have the same radius, like in Phase Shift Keying (PSK) modulations. However, when the constellation points are characterized by multiple radii, like in Quadrature Amplitude Modulation (QAM) signals, the CMA does not work properly in many situations. Thus, the techniques proposed here are designed to improve the performance of the CMA, in terms of speed of convergence and residual error, when working with signals transmitted with multiple magnitude, in particular with QAM signals. As well as for the CMA, these techniques should have a good compromise among performance, complexity and robustness. To do so, the techniques use the last decided symbol to estimate reference radius to the output of the equalizer. In fact, they can be seen as modifications of the CMA and of some of its derivatives for constellations with multiple radii. The proposition of stochastic gradient algorithms is concluded with the development of new adaptive blind techniques to equalize channels with a Wiener structure. A Wiener filter consists of a linear block with memory followed by a memoryless nonlinearity, by using the CMA. We develop expressions for the adaptation of the equalizer using a unified notation for three different equalizer filter structures: i) a Hammerstein filter, ii) a diagonal Volterra filter and iii) a Volterra filter. A theoretical analysis of the main proposed technique, the Decision Directed Modulus Algorithm (DDMA), is also done. We study the convergence and the stability of the DDMA by means of an analysis of the minima of the DDM cost function. We also develop an analytic expression for the Excess Mean Square Error (EMSE) provided by the DDMA in the noiseless case. Then, we nd some interesting relationships among the DDM, the CM and the Wiener cost functions. We also develop a class of normalized algorithms and a class of Recursive Least Squares (RLS)-type algorithms for blind equalization inspired on the CMA-based techniques studied. Each family is composed of four algorithms with desirable properties and advantages over the original CM algorithms, specially when working with high-level QAM signals. Normalized and RLS techniques for equalization of Wiener channels are also developed. The behavior of the proposed classes of algorithms discussed is tested by computational simulations. We verify that the proposed techniques provide significative gains in performance, in terms of speed of convergence and residual error, when compared to the classical algorithms.
description Este trabalho trata da proposiÃÃo de algoritmos para equalizaÃÃo cega de canais lineares e nÃao-lineares inspirados no Algoritmo do MÃdulo Constante (CMA). O CMA funciona de maneira bastante eficiente com constelaÃÃes nas quais todos os pontos possuem a mesma amplitude, como em modulaÃÃes do tipo Phase Shift Keying (PSK). Entretanto, quando os pontos da constelaÃÃo podem assumir diferentes valores de amplitudes, como em modulaÃÃes do tipo Quadrature Amplitude Modulation (QAM), o CMA e seus derivados muitas vezes nÃo funcionam de forma satisfatÃria. Desta forma, as tÃcnicas aqui propostas sÃo projetadas para melhorar a performance do CMA em termos de velocidade de convergÃncia e precisÃo, quando operando em sinais transmitidos com diversos mÃdulos, em particular para a modulaÃÃo QAM. Assim como o CMA, para possuir um bom apelo prÃtico, essas tÃcnicas devem apresentar bom compromisso entre complexidade, robustez e desempenho. Para tanto, as tÃcnicas propostas utilizam o Ãltimo sÃmbolo decidido para definir uma estimaÃÃo de raio de referÃncia para a saÃda do equalizador. De fato, esses algoritmos podem ser vistos como generalizaÃÃes do CMA e de alguns derivados do CMA para constelaÃÃes com mÃltiplos raios. A proposiÃÃo de algoritmos do tipo gradiente estocÃstico à concluÃda com o desenvolvimento de tÃcnicas originais, baseadas no CMA, para equalizaÃÃo de canais do tipo Wiener, que consiste em um filtro linear com memÃria, seguido por um filtro nÃo-linear sem memÃria. As expressÃes para a adaptaÃÃo do equalizador sÃo encontradas com o auxÃlio de uma notaÃÃo unificada para trÃs diferentes estruturas: i) um filtro de Hammerstein; ii) um filtro de Volterra diagonal; e iii) um filtro de Volterra completo. Um estudo teÃrico acerca do comportamento do principal algoritmo proposto, o Decision Directed Modulus Algorithm (DDMA) à realizado. SÃo analisadas a convergÃncia e a estabilidade do algoritmo atravÃs de uma anÃlise dos pontos de mÃnimo de sua funÃÃo custo. Outro objetivo à encontrar o valor teÃrico do Erro MÃdio QuadrÃtico MÃdio em Excesso - Excess Mean Square Error (EMSE) fornecido pelo DDMA considerando-se o caso sem ruÃdo. Ao final, à feito um estudo em que se constata que o algoritmo DDMA possui fortes ligaÃÃes com a soluÃÃo de Wiener e com o CMA. VersÃes normalizadas, bem como versÃes do tipo Recursive Least Squares (RLS), dos algoritmos do tipo gradiente estocÃstico estudados sÃo tambÃm desenvolvidas. Cada famÃlia de algoritmos estudada fie composta por quatro algoritmos com algumas propriedades interessantes e vantagens sobre as tÃcnicas clÃssicas, especialmente quando operando em sinais QAM de ordem elevada. TambÃm sÃo desenvolvidas versÃes normalizadas e do tipo RLS dos algoritmos do tipo CMA estudados para equalizaÃÃo de canais nÃo-lineares. O comportamento de todas as famÃlias de algoritmos desenvolvidos à testado atravÃs de simulaÃÃes computacionais, em que à verificado que as tÃcnicas propostas fornecem ganhos significativos em desempenho, em termos de velocidade de convergÃncia e erro residual, em relaÃÃo Ãs tÃcnicas clÃssicas.
publishDate 2005
dc.date.issued.fl_str_mv 2005-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2041
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2041
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295122714001408