A funÃÃo exponencial natural e aplicaÃÃes

Detalhes bibliográficos
Autor(a) principal: Horacio Eufrasio Pereira
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17219
Resumo: Este trabalho apresenta um estudo sobre as funÃÃes exponenciais, dando Ãnfase a funÃÃo exponencial de base e - tambÃm conhecida como funÃÃo exponencial natural- ,bem como as suas inÃmeras aplicaÃÃes, que permeiam diversas Ãreas de conhecimento como: Economia, Biologia, Arqueologia Demografia, Arquitetura, entre outras, fazendo dela, portanto, um objeto de interesse. O trabalho esta dividido em trÃs capÃtulos: Conceitos iniciais, A funÃÃo exponencial natural e AplicaÃÃes. No primeiro, apresentamos noÃÃes bÃsicas de sequÃncia de nÃmeros reais, como tambÃm as definiÃÃes de potÃncias de um expoente racional e das funÃÃes exponencial e logarÃtmica. No segundo, apresentamos aspectos histÃricos que cercam o nÃmero e e tambÃm sua definiÃÃo. Seguimos com estudo da funÃÃo exponencial natural, apresentando as suas principais propriedades, enfatizando aspectos relacionados a taxa instantÃnea de variaÃÃo (derivada) dessa funÃÃo. Neste, ainda, veremos que a funÃÃo do tipo f(x) = b. eαx, com base e, tem derivada proporcional à si mesma. Por fim, no terceiro capÃtulo, mostramos como as funÃÃes do tipo f(x) = b. eαx surgem espontaneamente em situaÃÃes de ordem prÃtica, como na capitalizaÃÃo contÃnua de juros e como, de modo geral, ela està intimamente ligada a inÃmeras situaÃÃes e fenÃmenos, em que a taxa de variaÃÃo de alguma grandeza à proporcional ao valor da prÃpria grandeza em um dado instante.
id UFC_756f1644f7ef27175246ef611bd2b3ef
oai_identifier_str oai:www.teses.ufc.br:11161
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisA funÃÃo exponencial natural e aplicaÃÃesThe natural exponential function and applications2015-06-24Maria Silvana Alcantara Costa81221673300http://lattes.cnpq.br/4616262586408783PlÃcido Francisco de Assis Andrade33437645749http://lattes.cnpq.br/5210879527072179Paulo CÃsar Cavalcante de Oliveira85199680315http://lattes.cnpq.br/715057263598569204030351395http://lattes.cnpq.br/7473480088844566Horacio Eufrasio PereiraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)UFCBRo nÃmero e funÃÃo exponencial natural aplicaÃÃesThe number e natural exponencial function applicationsMATEMATICAEste trabalho apresenta um estudo sobre as funÃÃes exponenciais, dando Ãnfase a funÃÃo exponencial de base e - tambÃm conhecida como funÃÃo exponencial natural- ,bem como as suas inÃmeras aplicaÃÃes, que permeiam diversas Ãreas de conhecimento como: Economia, Biologia, Arqueologia Demografia, Arquitetura, entre outras, fazendo dela, portanto, um objeto de interesse. O trabalho esta dividido em trÃs capÃtulos: Conceitos iniciais, A funÃÃo exponencial natural e AplicaÃÃes. No primeiro, apresentamos noÃÃes bÃsicas de sequÃncia de nÃmeros reais, como tambÃm as definiÃÃes de potÃncias de um expoente racional e das funÃÃes exponencial e logarÃtmica. No segundo, apresentamos aspectos histÃricos que cercam o nÃmero e e tambÃm sua definiÃÃo. Seguimos com estudo da funÃÃo exponencial natural, apresentando as suas principais propriedades, enfatizando aspectos relacionados a taxa instantÃnea de variaÃÃo (derivada) dessa funÃÃo. Neste, ainda, veremos que a funÃÃo do tipo f(x) = b. eαx, com base e, tem derivada proporcional à si mesma. Por fim, no terceiro capÃtulo, mostramos como as funÃÃes do tipo f(x) = b. eαx surgem espontaneamente em situaÃÃes de ordem prÃtica, como na capitalizaÃÃo contÃnua de juros e como, de modo geral, ela està intimamente ligada a inÃmeras situaÃÃes e fenÃmenos, em que a taxa de variaÃÃo de alguma grandeza à proporcional ao valor da prÃpria grandeza em um dado instante. This paper presents a study of the exponential functions, emphasizing basic exponential function e - also known as natural exponential function -, and its many applications that involve several areas of knowledge such as economics, biology, archeology, demographics, architecture, among others, making it therefore an object of interest. The work is divided into three chapters: Initial concepts, Natural exponential function and Applications. In the first, we present some basic sequence of real numbers, as well as the definitions of powers of rational exponent and exponential and logarithmic functions. In the second, we present historical aspects surrounding the number e and also its definition. We continue to study the natural exponential function, with its main properties, emphasizing aspects of the instantaneous rate of change (derivative) of this function. In addition, we see that the type f(x)= b. eαx, based on e, is derived proportional to herself. Finally, in the third chapter, we show how the functions of the type f(x)= b. eαx arising spontaneously in practicalsituations, such as continuous interest capitalization. And how, in general, it is closely linked to numerous situations and phenomena, where the rate of change of any magnitude is proportional to the value of own greatness at a given instant. CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17219application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:30:36Zmail@mail.com -
dc.title.pt.fl_str_mv A funÃÃo exponencial natural e aplicaÃÃes
dc.title.alternative.en.fl_str_mv The natural exponential function and applications
title A funÃÃo exponencial natural e aplicaÃÃes
spellingShingle A funÃÃo exponencial natural e aplicaÃÃes
Horacio Eufrasio Pereira
o nÃmero e
funÃÃo exponencial natural
aplicaÃÃes
The number e
natural exponencial function
applications
MATEMATICA
title_short A funÃÃo exponencial natural e aplicaÃÃes
title_full A funÃÃo exponencial natural e aplicaÃÃes
title_fullStr A funÃÃo exponencial natural e aplicaÃÃes
title_full_unstemmed A funÃÃo exponencial natural e aplicaÃÃes
title_sort A funÃÃo exponencial natural e aplicaÃÃes
author Horacio Eufrasio Pereira
author_facet Horacio Eufrasio Pereira
author_role author
dc.contributor.advisor1.fl_str_mv Maria Silvana Alcantara Costa
dc.contributor.advisor1ID.fl_str_mv 81221673300
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4616262586408783
dc.contributor.referee1.fl_str_mv PlÃcido Francisco de Assis Andrade
dc.contributor.referee1ID.fl_str_mv 33437645749
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5210879527072179
dc.contributor.referee2.fl_str_mv Paulo CÃsar Cavalcante de Oliveira
dc.contributor.referee2ID.fl_str_mv 85199680315
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7150572635985692
dc.contributor.authorID.fl_str_mv 04030351395
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7473480088844566
dc.contributor.author.fl_str_mv Horacio Eufrasio Pereira
contributor_str_mv Maria Silvana Alcantara Costa
PlÃcido Francisco de Assis Andrade
Paulo CÃsar Cavalcante de Oliveira
dc.subject.por.fl_str_mv o nÃmero e
funÃÃo exponencial natural
aplicaÃÃes
topic o nÃmero e
funÃÃo exponencial natural
aplicaÃÃes
The number e
natural exponencial function
applications
MATEMATICA
dc.subject.eng.fl_str_mv The number e
natural exponencial function
applications
dc.subject.cnpq.fl_str_mv MATEMATICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv Este trabalho apresenta um estudo sobre as funÃÃes exponenciais, dando Ãnfase a funÃÃo exponencial de base e - tambÃm conhecida como funÃÃo exponencial natural- ,bem como as suas inÃmeras aplicaÃÃes, que permeiam diversas Ãreas de conhecimento como: Economia, Biologia, Arqueologia Demografia, Arquitetura, entre outras, fazendo dela, portanto, um objeto de interesse. O trabalho esta dividido em trÃs capÃtulos: Conceitos iniciais, A funÃÃo exponencial natural e AplicaÃÃes. No primeiro, apresentamos noÃÃes bÃsicas de sequÃncia de nÃmeros reais, como tambÃm as definiÃÃes de potÃncias de um expoente racional e das funÃÃes exponencial e logarÃtmica. No segundo, apresentamos aspectos histÃricos que cercam o nÃmero e e tambÃm sua definiÃÃo. Seguimos com estudo da funÃÃo exponencial natural, apresentando as suas principais propriedades, enfatizando aspectos relacionados a taxa instantÃnea de variaÃÃo (derivada) dessa funÃÃo. Neste, ainda, veremos que a funÃÃo do tipo f(x) = b. eαx, com base e, tem derivada proporcional à si mesma. Por fim, no terceiro capÃtulo, mostramos como as funÃÃes do tipo f(x) = b. eαx surgem espontaneamente em situaÃÃes de ordem prÃtica, como na capitalizaÃÃo contÃnua de juros e como, de modo geral, ela està intimamente ligada a inÃmeras situaÃÃes e fenÃmenos, em que a taxa de variaÃÃo de alguma grandeza à proporcional ao valor da prÃpria grandeza em um dado instante.
dc.description.abstract.eng.fl_txt_mv This paper presents a study of the exponential functions, emphasizing basic exponential function e - also known as natural exponential function -, and its many applications that involve several areas of knowledge such as economics, biology, archeology, demographics, architecture, among others, making it therefore an object of interest. The work is divided into three chapters: Initial concepts, Natural exponential function and Applications. In the first, we present some basic sequence of real numbers, as well as the definitions of powers of rational exponent and exponential and logarithmic functions. In the second, we present historical aspects surrounding the number e and also its definition. We continue to study the natural exponential function, with its main properties, emphasizing aspects of the instantaneous rate of change (derivative) of this function. In addition, we see that the type f(x)= b. eαx, based on e, is derived proportional to herself. Finally, in the third chapter, we show how the functions of the type f(x)= b. eαx arising spontaneously in practicalsituations, such as continuous interest capitalization. And how, in general, it is closely linked to numerous situations and phenomena, where the rate of change of any magnitude is proportional to the value of own greatness at a given instant.
description Este trabalho apresenta um estudo sobre as funÃÃes exponenciais, dando Ãnfase a funÃÃo exponencial de base e - tambÃm conhecida como funÃÃo exponencial natural- ,bem como as suas inÃmeras aplicaÃÃes, que permeiam diversas Ãreas de conhecimento como: Economia, Biologia, Arqueologia Demografia, Arquitetura, entre outras, fazendo dela, portanto, um objeto de interesse. O trabalho esta dividido em trÃs capÃtulos: Conceitos iniciais, A funÃÃo exponencial natural e AplicaÃÃes. No primeiro, apresentamos noÃÃes bÃsicas de sequÃncia de nÃmeros reais, como tambÃm as definiÃÃes de potÃncias de um expoente racional e das funÃÃes exponencial e logarÃtmica. No segundo, apresentamos aspectos histÃricos que cercam o nÃmero e e tambÃm sua definiÃÃo. Seguimos com estudo da funÃÃo exponencial natural, apresentando as suas principais propriedades, enfatizando aspectos relacionados a taxa instantÃnea de variaÃÃo (derivada) dessa funÃÃo. Neste, ainda, veremos que a funÃÃo do tipo f(x) = b. eαx, com base e, tem derivada proporcional à si mesma. Por fim, no terceiro capÃtulo, mostramos como as funÃÃes do tipo f(x) = b. eαx surgem espontaneamente em situaÃÃes de ordem prÃtica, como na capitalizaÃÃo contÃnua de juros e como, de modo geral, ela està intimamente ligada a inÃmeras situaÃÃes e fenÃmenos, em que a taxa de variaÃÃo de alguma grandeza à proporcional ao valor da prÃpria grandeza em um dado instante.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17219
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17219
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295223036510208