Tensor Methods for Blind Spatial Signature Estimation

Detalhes bibliográficos
Autor(a) principal: Paulo Ricardo Barboza Gomes
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11635
Resumo: In this dissertation the problem of spatial signature and direction of arrival estimation in Linear 2L-Shape and Planar arrays is investigated Methods based on tensor decompositions are proposed to treat the problem of estimating blind spatial signatures disregarding the use of training sequences and knowledge of the covariance structure of the sources By assuming that the power of the sources varies between successive time blocks decompositions for tensors of third and fourth orders obtained from spatial and spatio-temporal covariance of the received data in the array are proposed from which iterative algorithms are formulated to estimate spatial signatures of the sources Then greater spatial diversity is achieved by using the Spatial Smoothing in the 2L-Shape and Planar arrays In that case the estimation of the direction of arrival of the sources can not be obtained directly from the formulated algorithms The factorization of the Khatri-Rao product is then incorporated into these algorithms making it possible extracting estimates for the azimuth and elevation angles from matrices obtained using this method A distinguishing feature of the proposed tensor methods is their efficiency to treat the cases where the covariance matrix of the sources is non-diagonal and unknown which generally happens when working with sample data covariances computed from a reduced number of snapshots
id UFC_9264950bd1986fb1a9d13e18d54935f0
oai_identifier_str oai:www.teses.ufc.br:7955
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTensor Methods for Blind Spatial Signature EstimationMÃtodos tensoriais para estimaÃÃo cega de assinaturas espaciais2014-03-14Andrà Lima FÃrrer de Almeida77024494387http://lattes.cnpq.br/1183830514857314Charles Casimiro Cavalcante54039410378http://lattes.cnpq.br/4751699166195344JoÃo Paulo Carvalho Lustosa da Costa63967308391http://lattes.cnpq.br/1786889674911887GÃrard Favier04157888383http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4416935U6Paulo Ricardo Barboza GomesUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBR DecomposiÃÃes tensoriaisArray signal processing spatial signature estimation tensor decompositionsENGENHARIA ELETRICAIn this dissertation the problem of spatial signature and direction of arrival estimation in Linear 2L-Shape and Planar arrays is investigated Methods based on tensor decompositions are proposed to treat the problem of estimating blind spatial signatures disregarding the use of training sequences and knowledge of the covariance structure of the sources By assuming that the power of the sources varies between successive time blocks decompositions for tensors of third and fourth orders obtained from spatial and spatio-temporal covariance of the received data in the array are proposed from which iterative algorithms are formulated to estimate spatial signatures of the sources Then greater spatial diversity is achieved by using the Spatial Smoothing in the 2L-Shape and Planar arrays In that case the estimation of the direction of arrival of the sources can not be obtained directly from the formulated algorithms The factorization of the Khatri-Rao product is then incorporated into these algorithms making it possible extracting estimates for the azimuth and elevation angles from matrices obtained using this method A distinguishing feature of the proposed tensor methods is their efficiency to treat the cases where the covariance matrix of the sources is non-diagonal and unknown which generally happens when working with sample data covariances computed from a reduced number of snapshotsNesta dissertaÃÃo o problema de estimaÃÃo de assinaturas espaciais e consequentemente da direÃÃo de chegada dos sinais incidentes em arranjos Linear 2L-Shape e Planar à investigado MÃtodos baseados em decomposiÃÃes tensoriais sÃo propostos para tratar o problema de estimaÃÃo cega de assinaturas espaciais desconsiderando a utilizaÃÃo de sequÃncias de treinamento e o conhecimento da estrutura de covariÃncia das fontes Ao assumir que a potÃncia das fontes varia entre blocos de tempos sucessivos decomposiÃÃes para tensores de terceira e quarta ordem obtidas a partir da covariÃncia espacial e espaÃo-temporal dos dados recebidos no arranjo de sensores sÃo propostas a partir das quais algoritmos iterativos sÃo formulados para estimar a assinatura espacial das fontes em seguida uma maior diversidade espacial à alcanÃada utilizando a tÃcnica Spatial Smoothing na recepÃÃo de sinais nos arranjos 2L-Shape e Planar Nesse caso as estimaÃÃes da direÃÃo de chegada das fontes nÃo podem ser obtidas diretamente a partir dos algoritmos formulados de forma que a fatoraÃÃo do produto de Khatri-Rao à incorporada a estes algoritmos tornando possÃvel a obtenÃÃo de estimaÃÃes para os Ãngulos de azimute e elevaÃÃo a partir das matrizes obtidas utilizando este mÃtodo Uma caracterÃstica marcante dos mÃtodos tensoriais propostos està presente na eficiÃncia obtida no tratamento de casos em que a matriz de covariÃncia das fontes à nÃo-diagonal e desconhecida o que geralmente ocorre quando se trabalha com covariÃncias de amostras reais calculadas a partir de um nÃmero reduzido de snapshotsFundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11635application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:24:48Zmail@mail.com -
dc.title.en.fl_str_mv Tensor Methods for Blind Spatial Signature Estimation
dc.title.alternative.pt.fl_str_mv MÃtodos tensoriais para estimaÃÃo cega de assinaturas espaciais
title Tensor Methods for Blind Spatial Signature Estimation
spellingShingle Tensor Methods for Blind Spatial Signature Estimation
Paulo Ricardo Barboza Gomes
DecomposiÃÃes tensoriais
Array signal processing
spatial signature estimation
tensor decompositions
ENGENHARIA ELETRICA
title_short Tensor Methods for Blind Spatial Signature Estimation
title_full Tensor Methods for Blind Spatial Signature Estimation
title_fullStr Tensor Methods for Blind Spatial Signature Estimation
title_full_unstemmed Tensor Methods for Blind Spatial Signature Estimation
title_sort Tensor Methods for Blind Spatial Signature Estimation
author Paulo Ricardo Barboza Gomes
author_facet Paulo Ricardo Barboza Gomes
author_role author
dc.contributor.advisor1.fl_str_mv Andrà Lima FÃrrer de Almeida
dc.contributor.advisor1ID.fl_str_mv 77024494387
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1183830514857314
dc.contributor.referee1.fl_str_mv Charles Casimiro Cavalcante
dc.contributor.referee1ID.fl_str_mv 54039410378
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4751699166195344
dc.contributor.referee2.fl_str_mv JoÃo Paulo Carvalho Lustosa da Costa
dc.contributor.referee2ID.fl_str_mv 63967308391
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1786889674911887
dc.contributor.referee3.fl_str_mv GÃrard Favier
dc.contributor.authorID.fl_str_mv 04157888383
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4416935U6
dc.contributor.author.fl_str_mv Paulo Ricardo Barboza Gomes
contributor_str_mv Andrà Lima FÃrrer de Almeida
Charles Casimiro Cavalcante
JoÃo Paulo Carvalho Lustosa da Costa
GÃrard Favier
dc.subject.por.fl_str_mv DecomposiÃÃes tensoriais
topic DecomposiÃÃes tensoriais
Array signal processing
spatial signature estimation
tensor decompositions
ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Array signal processing
spatial signature estimation
tensor decompositions
dc.subject.cnpq.fl_str_mv ENGENHARIA ELETRICA
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv In this dissertation the problem of spatial signature and direction of arrival estimation in Linear 2L-Shape and Planar arrays is investigated Methods based on tensor decompositions are proposed to treat the problem of estimating blind spatial signatures disregarding the use of training sequences and knowledge of the covariance structure of the sources By assuming that the power of the sources varies between successive time blocks decompositions for tensors of third and fourth orders obtained from spatial and spatio-temporal covariance of the received data in the array are proposed from which iterative algorithms are formulated to estimate spatial signatures of the sources Then greater spatial diversity is achieved by using the Spatial Smoothing in the 2L-Shape and Planar arrays In that case the estimation of the direction of arrival of the sources can not be obtained directly from the formulated algorithms The factorization of the Khatri-Rao product is then incorporated into these algorithms making it possible extracting estimates for the azimuth and elevation angles from matrices obtained using this method A distinguishing feature of the proposed tensor methods is their efficiency to treat the cases where the covariance matrix of the sources is non-diagonal and unknown which generally happens when working with sample data covariances computed from a reduced number of snapshots
Nesta dissertaÃÃo o problema de estimaÃÃo de assinaturas espaciais e consequentemente da direÃÃo de chegada dos sinais incidentes em arranjos Linear 2L-Shape e Planar à investigado MÃtodos baseados em decomposiÃÃes tensoriais sÃo propostos para tratar o problema de estimaÃÃo cega de assinaturas espaciais desconsiderando a utilizaÃÃo de sequÃncias de treinamento e o conhecimento da estrutura de covariÃncia das fontes Ao assumir que a potÃncia das fontes varia entre blocos de tempos sucessivos decomposiÃÃes para tensores de terceira e quarta ordem obtidas a partir da covariÃncia espacial e espaÃo-temporal dos dados recebidos no arranjo de sensores sÃo propostas a partir das quais algoritmos iterativos sÃo formulados para estimar a assinatura espacial das fontes em seguida uma maior diversidade espacial à alcanÃada utilizando a tÃcnica Spatial Smoothing na recepÃÃo de sinais nos arranjos 2L-Shape e Planar Nesse caso as estimaÃÃes da direÃÃo de chegada das fontes nÃo podem ser obtidas diretamente a partir dos algoritmos formulados de forma que a fatoraÃÃo do produto de Khatri-Rao à incorporada a estes algoritmos tornando possÃvel a obtenÃÃo de estimaÃÃes para os Ãngulos de azimute e elevaÃÃo a partir das matrizes obtidas utilizando este mÃtodo Uma caracterÃstica marcante dos mÃtodos tensoriais propostos està presente na eficiÃncia obtida no tratamento de casos em que a matriz de covariÃncia das fontes à nÃo-diagonal e desconhecida o que geralmente ocorre quando se trabalha com covariÃncias de amostras reais calculadas a partir de um nÃmero reduzido de snapshots
description In this dissertation the problem of spatial signature and direction of arrival estimation in Linear 2L-Shape and Planar arrays is investigated Methods based on tensor decompositions are proposed to treat the problem of estimating blind spatial signatures disregarding the use of training sequences and knowledge of the covariance structure of the sources By assuming that the power of the sources varies between successive time blocks decompositions for tensors of third and fourth orders obtained from spatial and spatio-temporal covariance of the received data in the array are proposed from which iterative algorithms are formulated to estimate spatial signatures of the sources Then greater spatial diversity is achieved by using the Spatial Smoothing in the 2L-Shape and Planar arrays In that case the estimation of the direction of arrival of the sources can not be obtained directly from the formulated algorithms The factorization of the Khatri-Rao product is then incorporated into these algorithms making it possible extracting estimates for the azimuth and elevation angles from matrices obtained using this method A distinguishing feature of the proposed tensor methods is their efficiency to treat the cases where the covariance matrix of the sources is non-diagonal and unknown which generally happens when working with sample data covariances computed from a reduced number of snapshots
publishDate 2014
dc.date.issued.fl_str_mv 2014-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11635
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11635
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295186394021888