Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573 |
Resumo: | The consumption of energy is a main factor that determines the viability of any industrial process. Thermal dehydration is responsible for a high consumption of energy. In developed countries, 9 to 25% of the energy consumption of the national industry is attached to thermal dehydration. Thus, studying the dehydration process shows itself very promisor. In biological products, dehydration has a specific importance, the product conservation. The organic matter of the product and its water create a propitious medium for microorganisms proliferation that will deteriorate the product, making the product inappropriate for consumption. In this work, the modeling and simulation of a convective dehydration process using a diffusive-convective differential model solved by the finite volumes numeric method for predicting the behavior of the mean moisture content during the dehydration, defining molecular mass transfer and convective coefficients, and drawing moisture profiles of the interior of the solid. To evaluate the influence of internal and external resistances, the mass transfer Biot number was obtained. The implementation of the models of this work were made in Python using its scientific models for solving differential equations. This tool has been utilized because it is open source, has simple implementation when compared to other programming languages and has performance when performing simulations. As study of cases, experimental data of assisted convective dehydration by ultrasound of apple (Malus domestica L. var Royal Gala) cubes with 8 mm under the following operation conditions: 1, 2, 3 and 5 m/s for dehydration velocities, air flow temperature of 45ÂC and 60ÂC, presence and absence of ultrasound during the dehydration process and presence and absence of the pre-treatment with ultrasounds. The apple cubes of the experiments have 25 Â1g of mass. The dehydration has been performed until the removal of 80% of the initial mass of the cubes. The parameters, diffusivity and mass transfer coefficient, have been adjusted by Levenberg-Marquardt non-linear regression method. The results obtained in the simulations showed that the implemented model is very promisor, because it represents accurately the process. The values for diffusivity and mass transfer coefficient herein obtained were plausible. The influence of the air flow velocity, temperature and ultrasounds assistance and ultrasounds pre-treatments have been analyzed. |
id |
UFC_987e77adb63834d144c94a76cdd12f9d |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:10852 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisModeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumesModelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos 2016-03-22Fabiano Andrà Narciso Fernandes26059059856http://lattes.cnpq.br/9978219072711522Samuel Jorge Marques Cartaxo54515939572SebastiÃo MardÃnio Pereira de Lucena25878760363Ãscar Alberto RodrÃguez BarragÃn07143021121http://lattes.cnpq.br/243610090977358804013561328 http://lattes.cnpq.br/2761195518894710Madson Linhares MagalhÃesUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia QuÃmicaUFCBRSecagem Modelagem e simulaÃÃo Python (Linguagem de programaÃÃo de computador) Volumes finitos Massa - TransferÃncia Drying Modeling and simulation Python Finite-volumes Mass transferENGENHARIA QUIMICAThe consumption of energy is a main factor that determines the viability of any industrial process. Thermal dehydration is responsible for a high consumption of energy. In developed countries, 9 to 25% of the energy consumption of the national industry is attached to thermal dehydration. Thus, studying the dehydration process shows itself very promisor. In biological products, dehydration has a specific importance, the product conservation. The organic matter of the product and its water create a propitious medium for microorganisms proliferation that will deteriorate the product, making the product inappropriate for consumption. In this work, the modeling and simulation of a convective dehydration process using a diffusive-convective differential model solved by the finite volumes numeric method for predicting the behavior of the mean moisture content during the dehydration, defining molecular mass transfer and convective coefficients, and drawing moisture profiles of the interior of the solid. To evaluate the influence of internal and external resistances, the mass transfer Biot number was obtained. The implementation of the models of this work were made in Python using its scientific models for solving differential equations. This tool has been utilized because it is open source, has simple implementation when compared to other programming languages and has performance when performing simulations. As study of cases, experimental data of assisted convective dehydration by ultrasound of apple (Malus domestica L. var Royal Gala) cubes with 8 mm under the following operation conditions: 1, 2, 3 and 5 m/s for dehydration velocities, air flow temperature of 45ÂC and 60ÂC, presence and absence of ultrasound during the dehydration process and presence and absence of the pre-treatment with ultrasounds. The apple cubes of the experiments have 25 Â1g of mass. The dehydration has been performed until the removal of 80% of the initial mass of the cubes. The parameters, diffusivity and mass transfer coefficient, have been adjusted by Levenberg-Marquardt non-linear regression method. The results obtained in the simulations showed that the implemented model is very promisor, because it represents accurately the process. The values for diffusivity and mass transfer coefficient herein obtained were plausible. The influence of the air flow velocity, temperature and ultrasounds assistance and ultrasounds pre-treatments have been analyzed.O consumo de energia à um fator determinante na viabilidade de qualquer processo industrial. A desidrataÃÃo tÃrmica à responsÃvel por um alto consumo de energia tÃrmica. Em paÃses desenvolvidos, o consumo da energia da indÃstria nacional à atribuÃdo, em mÃdia, entre 9-25% a desidrataÃÃo tÃrmica. Assim, o estudo do processo de secagem se mostra bastante promissor. Em produtos biolÃgicos, a secagem tem uma importÃncia especÃfica, a conservaÃÃo do produto, pois a matÃria orgÃnica do produto e a Ãgua presente nele torna este um local propÃcio para a proliferaÃÃo de micro-organismos que irÃo deteriorar o produto, tornando-o inapropriado para consumo. Neste trabalho, realizou-se a modelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos para predizer o comportamento do conteÃdo de umidade mÃdio durante a secagem de cubos, definir os coeficientes de transferÃncia de massa molecular e convectivo e encontrar os perfis do conteÃdo de umidade no interior do sÃlido. Para avaliar a influÃncia das resistÃncias interna e externa, o nÃmero de Biot de Massa foi obtido. A implementaÃÃo dos modelos deste trabalho foi realizada na ferramenta livre Python utilizando seus mÃdulos cientÃficos de resoluÃÃo de equaÃÃes diferenciais. Esta ferramenta foi utilizada porque à livre, implementaÃÃo simples, quando comparada com outras linguagens e possui alta performance nas simulaÃÃes. Como estudos de caso, utilizaram-se dados experimentais da secagem convectiva assistida por ultrassom de cubos de maÃà (Malus domestica L. var Royal Gala) com 8 mm de aresta nas seguintes condiÃÃes operacionais: velocidades de secagem: 1, 2, 3 e 5 m/s; temperatura do ar de secagem: 45 ÂC e 60 ÂC; presenÃa e ausÃncia de ultrassom durante a secagem; presenÃa e ausÃncia de etapa de prÃ-tratamento com ultrassom. Os cubos de maÃà dos experimentos tinham, em mÃdia, 25Â1 g. A secagem foi realizada atà que as amostras perdessem 80% da massa inicial. Os parÃmetros, difusividade e coeficiente de transferÃncia de massa, foram ajustados por regressÃo nÃo linear pelo mÃtodo de Levenberg-Marquardt. Os resultados obtidos nas simulaÃÃes mostraram que o modelo implementado à promissor, pois representa bem o processo. Os valores obtidos da difusividade e coeficiente de transferÃncia de massa foram plausÃveis. Analisou-se a influÃncia da velocidade do ar de secagem, da temperatura, da assistÃncia do ultrassom no processo e da utilizaÃÃo de uma etapa de prÃ-tratamento com ultrassom no processo de secagem.http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:29:57Zmail@mail.com - |
dc.title.en.fl_str_mv |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
dc.title.alternative.pt.fl_str_mv |
Modelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos |
title |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
spellingShingle |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes Madson Linhares MagalhÃes Secagem Modelagem e simulaÃÃo Python (Linguagem de programaÃÃo de computador) Volumes finitos Massa - TransferÃncia Drying Modeling and simulation Python Finite-volumes Mass transfer ENGENHARIA QUIMICA |
title_short |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
title_full |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
title_fullStr |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
title_full_unstemmed |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
title_sort |
Modeling and simulation of process of drying convective using differential model diffusive - convective solved by method of numerical finite volumes |
author |
Madson Linhares MagalhÃes |
author_facet |
Madson Linhares MagalhÃes |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Fabiano Andrà Narciso Fernandes |
dc.contributor.advisor1ID.fl_str_mv |
26059059856 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9978219072711522 |
dc.contributor.advisor-co1.fl_str_mv |
Samuel Jorge Marques Cartaxo |
dc.contributor.advisor-co1ID.fl_str_mv |
54515939572 |
dc.contributor.referee1.fl_str_mv |
SebastiÃo MardÃnio Pereira de Lucena |
dc.contributor.referee1ID.fl_str_mv |
25878760363 |
dc.contributor.referee2.fl_str_mv |
Ãscar Alberto RodrÃguez BarragÃn |
dc.contributor.referee2ID.fl_str_mv |
07143021121 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2436100909773588 |
dc.contributor.authorID.fl_str_mv |
04013561328 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2761195518894710 |
dc.contributor.author.fl_str_mv |
Madson Linhares MagalhÃes |
contributor_str_mv |
Fabiano Andrà Narciso Fernandes Samuel Jorge Marques Cartaxo SebastiÃo MardÃnio Pereira de Lucena Ãscar Alberto RodrÃguez BarragÃn |
dc.subject.por.fl_str_mv |
Secagem Modelagem e simulaÃÃo Python (Linguagem de programaÃÃo de computador) Volumes finitos Massa - TransferÃncia |
topic |
Secagem Modelagem e simulaÃÃo Python (Linguagem de programaÃÃo de computador) Volumes finitos Massa - TransferÃncia Drying Modeling and simulation Python Finite-volumes Mass transfer ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Drying Modeling and simulation Python Finite-volumes Mass transfer |
dc.subject.cnpq.fl_str_mv |
ENGENHARIA QUIMICA |
dc.description.abstract.por.fl_txt_mv |
The consumption of energy is a main factor that determines the viability of any industrial process. Thermal dehydration is responsible for a high consumption of energy. In developed countries, 9 to 25% of the energy consumption of the national industry is attached to thermal dehydration. Thus, studying the dehydration process shows itself very promisor. In biological products, dehydration has a specific importance, the product conservation. The organic matter of the product and its water create a propitious medium for microorganisms proliferation that will deteriorate the product, making the product inappropriate for consumption. In this work, the modeling and simulation of a convective dehydration process using a diffusive-convective differential model solved by the finite volumes numeric method for predicting the behavior of the mean moisture content during the dehydration, defining molecular mass transfer and convective coefficients, and drawing moisture profiles of the interior of the solid. To evaluate the influence of internal and external resistances, the mass transfer Biot number was obtained. The implementation of the models of this work were made in Python using its scientific models for solving differential equations. This tool has been utilized because it is open source, has simple implementation when compared to other programming languages and has performance when performing simulations. As study of cases, experimental data of assisted convective dehydration by ultrasound of apple (Malus domestica L. var Royal Gala) cubes with 8 mm under the following operation conditions: 1, 2, 3 and 5 m/s for dehydration velocities, air flow temperature of 45ÂC and 60ÂC, presence and absence of ultrasound during the dehydration process and presence and absence of the pre-treatment with ultrasounds. The apple cubes of the experiments have 25 Â1g of mass. The dehydration has been performed until the removal of 80% of the initial mass of the cubes. The parameters, diffusivity and mass transfer coefficient, have been adjusted by Levenberg-Marquardt non-linear regression method. The results obtained in the simulations showed that the implemented model is very promisor, because it represents accurately the process. The values for diffusivity and mass transfer coefficient herein obtained were plausible. The influence of the air flow velocity, temperature and ultrasounds assistance and ultrasounds pre-treatments have been analyzed. O consumo de energia à um fator determinante na viabilidade de qualquer processo industrial. A desidrataÃÃo tÃrmica à responsÃvel por um alto consumo de energia tÃrmica. Em paÃses desenvolvidos, o consumo da energia da indÃstria nacional à atribuÃdo, em mÃdia, entre 9-25% a desidrataÃÃo tÃrmica. Assim, o estudo do processo de secagem se mostra bastante promissor. Em produtos biolÃgicos, a secagem tem uma importÃncia especÃfica, a conservaÃÃo do produto, pois a matÃria orgÃnica do produto e a Ãgua presente nele torna este um local propÃcio para a proliferaÃÃo de micro-organismos que irÃo deteriorar o produto, tornando-o inapropriado para consumo. Neste trabalho, realizou-se a modelagem e simulaÃÃo do processo de secagem convectiva utilizando modelo diferencial difusivo-convectivo resolvido pelo mÃtodo numÃrico dos volumes finitos para predizer o comportamento do conteÃdo de umidade mÃdio durante a secagem de cubos, definir os coeficientes de transferÃncia de massa molecular e convectivo e encontrar os perfis do conteÃdo de umidade no interior do sÃlido. Para avaliar a influÃncia das resistÃncias interna e externa, o nÃmero de Biot de Massa foi obtido. A implementaÃÃo dos modelos deste trabalho foi realizada na ferramenta livre Python utilizando seus mÃdulos cientÃficos de resoluÃÃo de equaÃÃes diferenciais. Esta ferramenta foi utilizada porque à livre, implementaÃÃo simples, quando comparada com outras linguagens e possui alta performance nas simulaÃÃes. Como estudos de caso, utilizaram-se dados experimentais da secagem convectiva assistida por ultrassom de cubos de maÃà (Malus domestica L. var Royal Gala) com 8 mm de aresta nas seguintes condiÃÃes operacionais: velocidades de secagem: 1, 2, 3 e 5 m/s; temperatura do ar de secagem: 45 ÂC e 60 ÂC; presenÃa e ausÃncia de ultrassom durante a secagem; presenÃa e ausÃncia de etapa de prÃ-tratamento com ultrassom. Os cubos de maÃà dos experimentos tinham, em mÃdia, 25Â1 g. A secagem foi realizada atà que as amostras perdessem 80% da massa inicial. Os parÃmetros, difusividade e coeficiente de transferÃncia de massa, foram ajustados por regressÃo nÃo linear pelo mÃtodo de Levenberg-Marquardt. Os resultados obtidos nas simulaÃÃes mostraram que o modelo implementado à promissor, pois representa bem o processo. Os valores obtidos da difusividade e coeficiente de transferÃncia de massa foram plausÃveis. Analisou-se a influÃncia da velocidade do ar de secagem, da temperatura, da assistÃncia do ultrassom no processo e da utilizaÃÃo de uma etapa de prÃ-tratamento com ultrassom no processo de secagem. |
description |
The consumption of energy is a main factor that determines the viability of any industrial process. Thermal dehydration is responsible for a high consumption of energy. In developed countries, 9 to 25% of the energy consumption of the national industry is attached to thermal dehydration. Thus, studying the dehydration process shows itself very promisor. In biological products, dehydration has a specific importance, the product conservation. The organic matter of the product and its water create a propitious medium for microorganisms proliferation that will deteriorate the product, making the product inappropriate for consumption. In this work, the modeling and simulation of a convective dehydration process using a diffusive-convective differential model solved by the finite volumes numeric method for predicting the behavior of the mean moisture content during the dehydration, defining molecular mass transfer and convective coefficients, and drawing moisture profiles of the interior of the solid. To evaluate the influence of internal and external resistances, the mass transfer Biot number was obtained. The implementation of the models of this work were made in Python using its scientific models for solving differential equations. This tool has been utilized because it is open source, has simple implementation when compared to other programming languages and has performance when performing simulations. As study of cases, experimental data of assisted convective dehydration by ultrasound of apple (Malus domestica L. var Royal Gala) cubes with 8 mm under the following operation conditions: 1, 2, 3 and 5 m/s for dehydration velocities, air flow temperature of 45ÂC and 60ÂC, presence and absence of ultrasound during the dehydration process and presence and absence of the pre-treatment with ultrasounds. The apple cubes of the experiments have 25 Â1g of mass. The dehydration has been performed until the removal of 80% of the initial mass of the cubes. The parameters, diffusivity and mass transfer coefficient, have been adjusted by Levenberg-Marquardt non-linear regression method. The results obtained in the simulations showed that the implemented model is very promisor, because it represents accurately the process. The values for diffusivity and mass transfer coefficient herein obtained were plausible. The influence of the air flow velocity, temperature and ultrasounds assistance and ultrasounds pre-treatments have been analyzed. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-03-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16573 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia QuÃmica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295219521683456 |