Tessellations in the teaching of Euclidean geometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899 |
Resumo: | A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. |
id |
UFC_ab0f615bf38b9243084c47e5cc0a888a |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:10502 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTessellations in the teaching of Euclidean geometryTesselaÃÃes no ensino de geometria euclidiana 2015-09-26Clarice Dias de Albuquerque70014357300 http://lattes.cnpq.br/0349581457615451Maria Silvana Alcantara Costa81221673300http://lattes.cnpq.br/4616262586408783Paulo CÃsar Cavalcante de Oliveira85199680315http://lattes.cnpq.br/715057263598569277319524368http://lattes.cnpq.br/7348289902030063Maria RobevÃnia LeitÃoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)UFCBRcontextualizaÃÃo aplicaÃÃo aprendizagemPolÃgonos regularesaprendizagem significativacontextualization application learningmeaningful learningMATEMATICAA Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. Tesselar o plano euclidiano significa cobri-lo com figuras que se encaixem perfeitamente nÃo havendo sobreposiÃÃes, nem espaÃos vazios entre elas, de modo que a superfÃcie particionada seja igual ao tamanho total. Esse trabalho apresenta sugestÃes de abordagem de conteÃdos de geometria euclidiana plana atravÃs dessas tesselaÃÃes como uma estratÃgia de ensino que objetiva mostrar como à possÃvel tornar o ensino da geometria euclidiana mais atraente, motivado pelo interesse em resolver problemas de tesselaÃÃes. Inicialmente faremos um breve estudo sobre conceitos bÃsicos de geometria euclidiana plana, definiÃÃo, elementos e tipos de tesselaÃÃes. Em seguida sÃo sugeridas uma sequÃncia de trÃs atividades que abordam, de maneira interdisciplinar e contextualizada conteÃdos abstratos de geometria euclidiana plana para o ensino fundamental e mÃdio. A atividade 1 trata da abordagem de polÃgonos regulares por meio de tesselaÃÃes do plano euclidiano utilizando um sà tipo de polÃgono. A atividade 2 aborda o estudo das possibilidades de tesselaÃÃo do plano euclidiano utilizando dois ou mais polÃgonos regulares. A atividade 3 aborda as isometrias atravÃs das obras de Escher, com anÃlise de algumas obras desse artista e construÃÃo de tesselaÃÃes no estilo Escher. Discute-se algumas aplicaÃÃes das tesselaÃÃes dentro da prÃpria matemÃtica, na natureza e nas artes. A exploraÃÃo de conceitos geomÃtricos abstratos utilizando materiais concretos num enfoque contextualizado e interdisciplinar possibilita ao aluno desenvolver habilidades competÃncias necessÃrias para sua construÃÃo enquanto cidadÃo consciente e ativo no meio em que vive. Espera-se que este trabalho contribua significativamente para a melhoria de qualidade do ensino de MatemÃtica. CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:29:08Zmail@mail.com - |
dc.title.en.fl_str_mv |
Tessellations in the teaching of Euclidean geometry |
dc.title.alternative.pt.fl_str_mv |
TesselaÃÃes no ensino de geometria euclidiana |
title |
Tessellations in the teaching of Euclidean geometry |
spellingShingle |
Tessellations in the teaching of Euclidean geometry Maria RobevÃnia LeitÃo contextualizaÃÃo aplicaÃÃo aprendizagem PolÃgonos regulares aprendizagem significativa contextualization application learning meaningful learning MATEMATICA |
title_short |
Tessellations in the teaching of Euclidean geometry |
title_full |
Tessellations in the teaching of Euclidean geometry |
title_fullStr |
Tessellations in the teaching of Euclidean geometry |
title_full_unstemmed |
Tessellations in the teaching of Euclidean geometry |
title_sort |
Tessellations in the teaching of Euclidean geometry |
author |
Maria RobevÃnia LeitÃo |
author_facet |
Maria RobevÃnia LeitÃo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Clarice Dias de Albuquerque |
dc.contributor.advisor1ID.fl_str_mv |
70014357300 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0349581457615451 |
dc.contributor.referee1.fl_str_mv |
Maria Silvana Alcantara Costa |
dc.contributor.referee1ID.fl_str_mv |
81221673300 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4616262586408783 |
dc.contributor.referee2.fl_str_mv |
Paulo CÃsar Cavalcante de Oliveira |
dc.contributor.referee2ID.fl_str_mv |
85199680315 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7150572635985692 |
dc.contributor.authorID.fl_str_mv |
77319524368 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7348289902030063 |
dc.contributor.author.fl_str_mv |
Maria RobevÃnia LeitÃo |
contributor_str_mv |
Clarice Dias de Albuquerque Maria Silvana Alcantara Costa Paulo CÃsar Cavalcante de Oliveira |
dc.subject.por.fl_str_mv |
contextualizaÃÃo aplicaÃÃo aprendizagem PolÃgonos regulares aprendizagem significativa |
topic |
contextualizaÃÃo aplicaÃÃo aprendizagem PolÃgonos regulares aprendizagem significativa contextualization application learning meaningful learning MATEMATICA |
dc.subject.eng.fl_str_mv |
contextualization application learning meaningful learning |
dc.subject.cnpq.fl_str_mv |
MATEMATICA |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. Tesselar o plano euclidiano significa cobri-lo com figuras que se encaixem perfeitamente nÃo havendo sobreposiÃÃes, nem espaÃos vazios entre elas, de modo que a superfÃcie particionada seja igual ao tamanho total. Esse trabalho apresenta sugestÃes de abordagem de conteÃdos de geometria euclidiana plana atravÃs dessas tesselaÃÃes como uma estratÃgia de ensino que objetiva mostrar como à possÃvel tornar o ensino da geometria euclidiana mais atraente, motivado pelo interesse em resolver problemas de tesselaÃÃes. Inicialmente faremos um breve estudo sobre conceitos bÃsicos de geometria euclidiana plana, definiÃÃo, elementos e tipos de tesselaÃÃes. Em seguida sÃo sugeridas uma sequÃncia de trÃs atividades que abordam, de maneira interdisciplinar e contextualizada conteÃdos abstratos de geometria euclidiana plana para o ensino fundamental e mÃdio. A atividade 1 trata da abordagem de polÃgonos regulares por meio de tesselaÃÃes do plano euclidiano utilizando um sà tipo de polÃgono. A atividade 2 aborda o estudo das possibilidades de tesselaÃÃo do plano euclidiano utilizando dois ou mais polÃgonos regulares. A atividade 3 aborda as isometrias atravÃs das obras de Escher, com anÃlise de algumas obras desse artista e construÃÃo de tesselaÃÃes no estilo Escher. Discute-se algumas aplicaÃÃes das tesselaÃÃes dentro da prÃpria matemÃtica, na natureza e nas artes. A exploraÃÃo de conceitos geomÃtricos abstratos utilizando materiais concretos num enfoque contextualizado e interdisciplinar possibilita ao aluno desenvolver habilidades competÃncias necessÃrias para sua construÃÃo enquanto cidadÃo consciente e ativo no meio em que vive. Espera-se que este trabalho contribua significativamente para a melhoria de qualidade do ensino de MatemÃtica. |
description |
A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-09-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT) |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295215034826752 |