Tessellations in the teaching of Euclidean geometry

Detalhes bibliográficos
Autor(a) principal: Maria RobevÃnia LeitÃo
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899
Resumo: A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching.
id UFC_ab0f615bf38b9243084c47e5cc0a888a
oai_identifier_str oai:www.teses.ufc.br:10502
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTessellations in the teaching of Euclidean geometryTesselaÃÃes no ensino de geometria euclidiana 2015-09-26Clarice Dias de Albuquerque70014357300 http://lattes.cnpq.br/0349581457615451Maria Silvana Alcantara Costa81221673300http://lattes.cnpq.br/4616262586408783Paulo CÃsar Cavalcante de Oliveira85199680315http://lattes.cnpq.br/715057263598569277319524368http://lattes.cnpq.br/7348289902030063Maria RobevÃnia LeitÃoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)UFCBRcontextualizaÃÃo aplicaÃÃo aprendizagemPolÃgonos regularesaprendizagem significativacontextualization application learningmeaningful learningMATEMATICAA Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. Tesselar o plano euclidiano significa cobri-lo com figuras que se encaixem perfeitamente nÃo havendo sobreposiÃÃes, nem espaÃos vazios entre elas, de modo que a superfÃcie particionada seja igual ao tamanho total. Esse trabalho apresenta sugestÃes de abordagem de conteÃdos de geometria euclidiana plana atravÃs dessas tesselaÃÃes como uma estratÃgia de ensino que objetiva mostrar como à possÃvel tornar o ensino da geometria euclidiana mais atraente, motivado pelo interesse em resolver problemas de tesselaÃÃes. Inicialmente faremos um breve estudo sobre conceitos bÃsicos de geometria euclidiana plana, definiÃÃo, elementos e tipos de tesselaÃÃes. Em seguida sÃo sugeridas uma sequÃncia de trÃs atividades que abordam, de maneira interdisciplinar e contextualizada conteÃdos abstratos de geometria euclidiana plana para o ensino fundamental e mÃdio. A atividade 1 trata da abordagem de polÃgonos regulares por meio de tesselaÃÃes do plano euclidiano utilizando um sà tipo de polÃgono. A atividade 2 aborda o estudo das possibilidades de tesselaÃÃo do plano euclidiano utilizando dois ou mais polÃgonos regulares. A atividade 3 aborda as isometrias atravÃs das obras de Escher, com anÃlise de algumas obras desse artista e construÃÃo de tesselaÃÃes no estilo Escher. Discute-se algumas aplicaÃÃes das tesselaÃÃes dentro da prÃpria matemÃtica, na natureza e nas artes. A exploraÃÃo de conceitos geomÃtricos abstratos utilizando materiais concretos num enfoque contextualizado e interdisciplinar possibilita ao aluno desenvolver habilidades competÃncias necessÃrias para sua construÃÃo enquanto cidadÃo consciente e ativo no meio em que vive. Espera-se que este trabalho contribua significativamente para a melhoria de qualidade do ensino de MatemÃtica. CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:29:08Zmail@mail.com -
dc.title.en.fl_str_mv Tessellations in the teaching of Euclidean geometry
dc.title.alternative.pt.fl_str_mv TesselaÃÃes no ensino de geometria euclidiana
title Tessellations in the teaching of Euclidean geometry
spellingShingle Tessellations in the teaching of Euclidean geometry
Maria RobevÃnia LeitÃo
contextualizaÃÃo
aplicaÃÃo
aprendizagem
PolÃgonos regulares
aprendizagem significativa
contextualization
application
learning
meaningful learning
MATEMATICA
title_short Tessellations in the teaching of Euclidean geometry
title_full Tessellations in the teaching of Euclidean geometry
title_fullStr Tessellations in the teaching of Euclidean geometry
title_full_unstemmed Tessellations in the teaching of Euclidean geometry
title_sort Tessellations in the teaching of Euclidean geometry
author Maria RobevÃnia LeitÃo
author_facet Maria RobevÃnia LeitÃo
author_role author
dc.contributor.advisor1.fl_str_mv Clarice Dias de Albuquerque
dc.contributor.advisor1ID.fl_str_mv 70014357300
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0349581457615451
dc.contributor.referee1.fl_str_mv Maria Silvana Alcantara Costa
dc.contributor.referee1ID.fl_str_mv 81221673300
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4616262586408783
dc.contributor.referee2.fl_str_mv Paulo CÃsar Cavalcante de Oliveira
dc.contributor.referee2ID.fl_str_mv 85199680315
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7150572635985692
dc.contributor.authorID.fl_str_mv 77319524368
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7348289902030063
dc.contributor.author.fl_str_mv Maria RobevÃnia LeitÃo
contributor_str_mv Clarice Dias de Albuquerque
Maria Silvana Alcantara Costa
Paulo CÃsar Cavalcante de Oliveira
dc.subject.por.fl_str_mv contextualizaÃÃo
aplicaÃÃo
aprendizagem
PolÃgonos regulares
aprendizagem significativa
topic contextualizaÃÃo
aplicaÃÃo
aprendizagem
PolÃgonos regulares
aprendizagem significativa
contextualization
application
learning
meaningful learning
MATEMATICA
dc.subject.eng.fl_str_mv contextualization
application
learning
meaningful learning
dc.subject.cnpq.fl_str_mv MATEMATICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching.
Tesselar o plano euclidiano significa cobri-lo com figuras que se encaixem perfeitamente nÃo havendo sobreposiÃÃes, nem espaÃos vazios entre elas, de modo que a superfÃcie particionada seja igual ao tamanho total. Esse trabalho apresenta sugestÃes de abordagem de conteÃdos de geometria euclidiana plana atravÃs dessas tesselaÃÃes como uma estratÃgia de ensino que objetiva mostrar como à possÃvel tornar o ensino da geometria euclidiana mais atraente, motivado pelo interesse em resolver problemas de tesselaÃÃes. Inicialmente faremos um breve estudo sobre conceitos bÃsicos de geometria euclidiana plana, definiÃÃo, elementos e tipos de tesselaÃÃes. Em seguida sÃo sugeridas uma sequÃncia de trÃs atividades que abordam, de maneira interdisciplinar e contextualizada conteÃdos abstratos de geometria euclidiana plana para o ensino fundamental e mÃdio. A atividade 1 trata da abordagem de polÃgonos regulares por meio de tesselaÃÃes do plano euclidiano utilizando um sà tipo de polÃgono. A atividade 2 aborda o estudo das possibilidades de tesselaÃÃo do plano euclidiano utilizando dois ou mais polÃgonos regulares. A atividade 3 aborda as isometrias atravÃs das obras de Escher, com anÃlise de algumas obras desse artista e construÃÃo de tesselaÃÃes no estilo Escher. Discute-se algumas aplicaÃÃes das tesselaÃÃes dentro da prÃpria matemÃtica, na natureza e nas artes. A exploraÃÃo de conceitos geomÃtricos abstratos utilizando materiais concretos num enfoque contextualizado e interdisciplinar possibilita ao aluno desenvolver habilidades competÃncias necessÃrias para sua construÃÃo enquanto cidadÃo consciente e ativo no meio em que vive. Espera-se que este trabalho contribua significativamente para a melhoria de qualidade do ensino de MatemÃtica.
description A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching.
publishDate 2015
dc.date.issued.fl_str_mv 2015-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15899
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295215034826752