Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967 |
Resumo: | Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. |
id |
UFC_aef66d79ae6e431a4eec7217f2288752 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:9962 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisGradient-Based Steering for Vision-Based Crowd Simulation AlgorithmsGradient-Based Steering for Vision-Based Crowd Simulation Algorithms 2015-06-16Joaquim Bento Cavalcante Neto41039181368http://lattes.cnpq.br/0866205347972203Creto Augusto Vidal1161802738 http://lattes.cnpq.br/9499398320838094Soraia Raupp Musse60294582053http://lattes.cnpq.br/2302314954133011 Emanuele Marques dos Santos76979237349http://lattes.cnpq.br/3334643879272311Julien PettrÃ11111111111102115134311http://lattes.cnpq.br/7848977262203139TeÃfilo Bezerra DutraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃoUFCBRSimulaÃÃo de multidÃo VisÃo sintÃtica PrevenÃÃo de colisÃoCrowd simulation Synthetic vision Collision avoidanceCIENCIA DA COMPUTACAOMost recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, Ã proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - Ã sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, Ã introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos.nÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:11Zmail@mail.com - |
dc.title.en.fl_str_mv |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
dc.title.alternative.pt.fl_str_mv |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
title |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
spellingShingle |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms TeÃfilo Bezerra Dutra SimulaÃÃo de multidÃo VisÃo sintÃtica PrevenÃÃo de colisÃo Crowd simulation Synthetic vision Collision avoidance CIENCIA DA COMPUTACAO |
title_short |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
title_full |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
title_fullStr |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
title_full_unstemmed |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
title_sort |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms |
author |
TeÃfilo Bezerra Dutra |
author_facet |
TeÃfilo Bezerra Dutra |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Joaquim Bento Cavalcante Neto |
dc.contributor.advisor1ID.fl_str_mv |
41039181368 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0866205347972203 |
dc.contributor.advisor-co1.fl_str_mv |
Creto Augusto Vidal |
dc.contributor.advisor-co1ID.fl_str_mv |
1161802738 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9499398320838094 |
dc.contributor.referee1.fl_str_mv |
Soraia Raupp Musse |
dc.contributor.referee1ID.fl_str_mv |
60294582053 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2302314954133011 |
dc.contributor.referee2.fl_str_mv |
Emanuele Marques dos Santos |
dc.contributor.referee2ID.fl_str_mv |
76979237349 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3334643879272311 |
dc.contributor.referee3.fl_str_mv |
Julien Pettrà |
dc.contributor.referee3ID.fl_str_mv |
111111111111 |
dc.contributor.authorID.fl_str_mv |
02115134311 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7848977262203139 |
dc.contributor.author.fl_str_mv |
TeÃfilo Bezerra Dutra |
contributor_str_mv |
Joaquim Bento Cavalcante Neto Creto Augusto Vidal Soraia Raupp Musse Emanuele Marques dos Santos Julien Pettrà |
dc.subject.eng.fl_str_mv |
SimulaÃÃo de multidÃo VisÃo sintÃtica PrevenÃÃo de colisÃo Crowd simulation Synthetic vision Collision avoidance |
topic |
SimulaÃÃo de multidÃo VisÃo sintÃtica PrevenÃÃo de colisÃo Crowd simulation Synthetic vision Collision avoidance CIENCIA DA COMPUTACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO |
dc.description.sponsorship.fl_txt_mv |
nÃo hà |
dc.description.abstract.por.fl_txt_mv |
Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, Ã proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - Ã sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, Ã introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos. |
description |
Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-06-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295207957987328 |