Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms

Detalhes bibliográficos
Autor(a) principal: TeÃfilo Bezerra Dutra
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967
Resumo: Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.
id UFC_aef66d79ae6e431a4eec7217f2288752
oai_identifier_str oai:www.teses.ufc.br:9962
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisGradient-Based Steering for Vision-Based Crowd Simulation AlgorithmsGradient-Based Steering for Vision-Based Crowd Simulation Algorithms 2015-06-16Joaquim Bento Cavalcante Neto41039181368http://lattes.cnpq.br/0866205347972203Creto Augusto Vidal1161802738 http://lattes.cnpq.br/9499398320838094Soraia Raupp Musse60294582053http://lattes.cnpq.br/2302314954133011 Emanuele Marques dos Santos76979237349http://lattes.cnpq.br/3334643879272311Julien PettrÃ11111111111102115134311http://lattes.cnpq.br/7848977262203139TeÃfilo Bezerra DutraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃoUFCBRSimulaÃÃo de multidÃo VisÃo sintÃtica PrevenÃÃo de colisÃoCrowd simulation Synthetic vision Collision avoidanceCIENCIA DA COMPUTACAOMost recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, Ã proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - Ã sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, Ã introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos.nÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:11Zmail@mail.com -
dc.title.en.fl_str_mv Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
dc.title.alternative.pt.fl_str_mv Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
title Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
spellingShingle Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
TeÃfilo Bezerra Dutra
SimulaÃÃo de multidÃo
VisÃo sintÃtica
PrevenÃÃo de colisÃo
Crowd simulation
Synthetic vision
Collision avoidance
CIENCIA DA COMPUTACAO
title_short Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
title_full Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
title_fullStr Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
title_full_unstemmed Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
title_sort Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms
author TeÃfilo Bezerra Dutra
author_facet TeÃfilo Bezerra Dutra
author_role author
dc.contributor.advisor1.fl_str_mv Joaquim Bento Cavalcante Neto
dc.contributor.advisor1ID.fl_str_mv 41039181368
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0866205347972203
dc.contributor.advisor-co1.fl_str_mv Creto Augusto Vidal
dc.contributor.advisor-co1ID.fl_str_mv 1161802738
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9499398320838094
dc.contributor.referee1.fl_str_mv Soraia Raupp Musse
dc.contributor.referee1ID.fl_str_mv 60294582053
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2302314954133011
dc.contributor.referee2.fl_str_mv Emanuele Marques dos Santos
dc.contributor.referee2ID.fl_str_mv 76979237349
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3334643879272311
dc.contributor.referee3.fl_str_mv Julien PettrÃ
dc.contributor.referee3ID.fl_str_mv 111111111111
dc.contributor.authorID.fl_str_mv 02115134311
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7848977262203139
dc.contributor.author.fl_str_mv TeÃfilo Bezerra Dutra
contributor_str_mv Joaquim Bento Cavalcante Neto
Creto Augusto Vidal
Soraia Raupp Musse
Emanuele Marques dos Santos
Julien PettrÃ
dc.subject.eng.fl_str_mv SimulaÃÃo de multidÃo
VisÃo sintÃtica
PrevenÃÃo de colisÃo
Crowd simulation
Synthetic vision
Collision avoidance
topic SimulaÃÃo de multidÃo
VisÃo sintÃtica
PrevenÃÃo de colisÃo
Crowd simulation
Synthetic vision
Collision avoidance
CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO
dc.description.sponsorship.fl_txt_mv nÃo hÃ
dc.description.abstract.por.fl_txt_mv Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.
Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, Ã proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - Ã sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, Ã introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos.
description Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14967
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295207957987328