Minimum spanning tree problem with minimum degree constraint and central and fixed terminals

Detalhes bibliográficos
Autor(a) principal: FÃbio Carlos Sousa Dias
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13199
Resumo: The Min-Degree Constrained Minimum Spannig Tree - MD-MST is to find a minimum spanning tree of a graph where each vertex is a leaf of the tree or satisfies a constraint of minimum degree. The leaf vertices are called terminals and the others are the central vertices. We define and study a variation of this problem, which we denote MDF-MST, where the terminal and central vertices are fixed. We show that the problem is NP-Hard and is in FPT, parameterized by the number of central vertices. We also identify cases where the problem becomes polynomial. We propose several integer programming formulations for the problem and compare the quality of lower bound generated by their linear relaxations. We propose and teste a Lagrangian Relaxation for the problem, which we also use to define Lagrangian heuristics. We define greedy heuristics, a VND Local search and a VNS heuristic. We present a Bendersâs Decomposition. We propose a new general heuristic that combines ingredients from the Bendersâs decomposition with subgradient method, which we call subgradient heuristic. We apply this heuristic to the MDF-MST. All these algorithms have been implemented, tested and compared among them and with the CPLEX solver. The computational efficiency of the proposed algorithms, especially the Lagrangian heuristics, is comparable with that of CPLEX, and even better in several cases. Some of these algorithms were adapted for the MD-MST and DC-MST (inthelatter,thedegreeconstraintisofmaximumdegree). Whencomparingthecomputational results with the literature, we conclude that the algorithms are competitive.
id UFC_d384b671ef649919ba4aa7f13d2e1e1c
oai_identifier_str oai:www.teses.ufc.br:8785
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMinimum spanning tree problem with minimum degree constraint and central and fixed terminalsProblema de Ãrvore Geradora MÃnima com RestriÃÃo de Grau MÃnima e Centrais e Terminais Fixos 2014-07-31Manoel Bezerra Campelo Neto32171684372http://lattes.cnpq.br/7207626266770213Luiz Satoru Ochi49197371734http://lattes.cnpq.br/9171815778534257Rafael Castro de Andrade49679767353http://lattes.cnpq.br/7026313596468626CrÃston Pereira de Souza898832175/87http://lattes.cnpq.br/1556476759915826Mauricio Cardoso de Souza01403805706http://lattes.cnpq.br/283452219883279779793053372http://lattes.cnpq.br/7261559778639526FÃbio Carlos Sousa DiasUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃoUFCBRÃrvore Geradora, OtimizaÃÃo, ProgramaÃÃo InteiraCIENCIA DA COMPUTACAOThe Min-Degree Constrained Minimum Spannig Tree - MD-MST is to find a minimum spanning tree of a graph where each vertex is a leaf of the tree or satisfies a constraint of minimum degree. The leaf vertices are called terminals and the others are the central vertices. We define and study a variation of this problem, which we denote MDF-MST, where the terminal and central vertices are fixed. We show that the problem is NP-Hard and is in FPT, parameterized by the number of central vertices. We also identify cases where the problem becomes polynomial. We propose several integer programming formulations for the problem and compare the quality of lower bound generated by their linear relaxations. We propose and teste a Lagrangian Relaxation for the problem, which we also use to define Lagrangian heuristics. We define greedy heuristics, a VND Local search and a VNS heuristic. We present a Bendersâs Decomposition. We propose a new general heuristic that combines ingredients from the Bendersâs decomposition with subgradient method, which we call subgradient heuristic. We apply this heuristic to the MDF-MST. All these algorithms have been implemented, tested and compared among them and with the CPLEX solver. The computational efficiency of the proposed algorithms, especially the Lagrangian heuristics, is comparable with that of CPLEX, and even better in several cases. Some of these algorithms were adapted for the MD-MST and DC-MST (inthelatter,thedegreeconstraintisofmaximumdegree). Whencomparingthecomputational results with the literature, we conclude that the algorithms are competitive. O Problema de Ãrvore Geradora MÃnima com RestriÃÃo de Grau MÃnimo (Min-Degree Constrained Minimum Spannig Tree - MD-MST) consiste em encontrar uma Ãrvore geradora mÃnima de um grafo onde cada vÃrtice ou à folha da Ãrvore ou satisfaz uma restriÃÃo de grau mÃnimo. Os vÃrtices folhas sÃo chamados terminais e os demais sÃo os centrais. Definimos e estudamos uma variaÃÃo desse problema, que denotamos MDF-MST, onde os terminais e centrais sÃo definidos a priori. Mostramos que o problema à NP-DifÃcil e està na Classe FPT, parametrizado pelo nÃmero de centrais. Identificamos tambÃm casos onde o problema torna-se polinomial. Propomos vÃrias formulaÃÃes de programaÃÃo inteira para o problema e comparamos teÃrica e computacionalmente a qualidade do limite inferior gerado por suas relaxaÃÃes lineares. Propomos e testamos uma relaxaÃÃo lagrangeana para o problema, que usamos tambÃm para definir heurÃsticas lagrangenas. Definimos heurÃsticas gulosas, uma busca VND e uma heurÃstica VNS. Apresentamos uma decomposiÃÃo de Benders. Propomos uma nova heurÃstica geral que combina ingredientes da decomposiÃÃo de Benders com mÃtodo de subgradientes, a qual denominamos HeurÃstica de Subgradientes. Aplicamos tal heurÃstica ao MDF-MST. Todos esses algoritmos foram implementados, testados, comparados entre si e com o solver CPLEX. A eficiÃncia computacional dos algoritmos propostos, especialmente a relaxaÃÃo lagrangeana, à competitiva com a do CPLEX, e superior em vÃrios casos. Alguns desses algoritmos foram adaptados para o problema MD-MST e seu correlato DC-MST (este Ãltimo onde a restriÃÃo sobre os centrais à de grau mÃximo). Quando comparamos os resultados computacionais com a literaturanÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13199application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:26:28Zmail@mail.com -
dc.title.en.fl_str_mv Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
dc.title.alternative.pt.fl_str_mv Problema de Ãrvore Geradora MÃnima com RestriÃÃo de Grau MÃnima e Centrais e Terminais Fixos
title Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
spellingShingle Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
FÃbio Carlos Sousa Dias
Ãrvore Geradora, OtimizaÃÃo, ProgramaÃÃo Inteira
CIENCIA DA COMPUTACAO
title_short Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
title_full Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
title_fullStr Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
title_full_unstemmed Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
title_sort Minimum spanning tree problem with minimum degree constraint and central and fixed terminals
author FÃbio Carlos Sousa Dias
author_facet FÃbio Carlos Sousa Dias
author_role author
dc.contributor.advisor1.fl_str_mv Manoel Bezerra Campelo Neto
dc.contributor.advisor1ID.fl_str_mv 32171684372
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7207626266770213
dc.contributor.referee1.fl_str_mv Luiz Satoru Ochi
dc.contributor.referee1ID.fl_str_mv 49197371734
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9171815778534257
dc.contributor.referee2.fl_str_mv Rafael Castro de Andrade
dc.contributor.referee2ID.fl_str_mv 49679767353
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7026313596468626
dc.contributor.referee3.fl_str_mv CrÃston Pereira de Souza
dc.contributor.referee3ID.fl_str_mv 898832175/87
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/1556476759915826
dc.contributor.referee4.fl_str_mv Mauricio Cardoso de Souza
dc.contributor.referee4ID.fl_str_mv 01403805706
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2834522198832797
dc.contributor.authorID.fl_str_mv 79793053372
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7261559778639526
dc.contributor.author.fl_str_mv FÃbio Carlos Sousa Dias
contributor_str_mv Manoel Bezerra Campelo Neto
Luiz Satoru Ochi
Rafael Castro de Andrade
CrÃston Pereira de Souza
Mauricio Cardoso de Souza
dc.subject.por.fl_str_mv Ãrvore Geradora, OtimizaÃÃo, ProgramaÃÃo Inteira
topic Ãrvore Geradora, OtimizaÃÃo, ProgramaÃÃo Inteira
CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO
dc.description.sponsorship.fl_txt_mv nÃo hÃ
dc.description.abstract.por.fl_txt_mv The Min-Degree Constrained Minimum Spannig Tree - MD-MST is to find a minimum spanning tree of a graph where each vertex is a leaf of the tree or satisfies a constraint of minimum degree. The leaf vertices are called terminals and the others are the central vertices. We define and study a variation of this problem, which we denote MDF-MST, where the terminal and central vertices are fixed. We show that the problem is NP-Hard and is in FPT, parameterized by the number of central vertices. We also identify cases where the problem becomes polynomial. We propose several integer programming formulations for the problem and compare the quality of lower bound generated by their linear relaxations. We propose and teste a Lagrangian Relaxation for the problem, which we also use to define Lagrangian heuristics. We define greedy heuristics, a VND Local search and a VNS heuristic. We present a Bendersâs Decomposition. We propose a new general heuristic that combines ingredients from the Bendersâs decomposition with subgradient method, which we call subgradient heuristic. We apply this heuristic to the MDF-MST. All these algorithms have been implemented, tested and compared among them and with the CPLEX solver. The computational efficiency of the proposed algorithms, especially the Lagrangian heuristics, is comparable with that of CPLEX, and even better in several cases. Some of these algorithms were adapted for the MD-MST and DC-MST (inthelatter,thedegreeconstraintisofmaximumdegree). Whencomparingthecomputational results with the literature, we conclude that the algorithms are competitive.
O Problema de Ãrvore Geradora MÃnima com RestriÃÃo de Grau MÃnimo (Min-Degree Constrained Minimum Spannig Tree - MD-MST) consiste em encontrar uma Ãrvore geradora mÃnima de um grafo onde cada vÃrtice ou à folha da Ãrvore ou satisfaz uma restriÃÃo de grau mÃnimo. Os vÃrtices folhas sÃo chamados terminais e os demais sÃo os centrais. Definimos e estudamos uma variaÃÃo desse problema, que denotamos MDF-MST, onde os terminais e centrais sÃo definidos a priori. Mostramos que o problema à NP-DifÃcil e està na Classe FPT, parametrizado pelo nÃmero de centrais. Identificamos tambÃm casos onde o problema torna-se polinomial. Propomos vÃrias formulaÃÃes de programaÃÃo inteira para o problema e comparamos teÃrica e computacionalmente a qualidade do limite inferior gerado por suas relaxaÃÃes lineares. Propomos e testamos uma relaxaÃÃo lagrangeana para o problema, que usamos tambÃm para definir heurÃsticas lagrangenas. Definimos heurÃsticas gulosas, uma busca VND e uma heurÃstica VNS. Apresentamos uma decomposiÃÃo de Benders. Propomos uma nova heurÃstica geral que combina ingredientes da decomposiÃÃo de Benders com mÃtodo de subgradientes, a qual denominamos HeurÃstica de Subgradientes. Aplicamos tal heurÃstica ao MDF-MST. Todos esses algoritmos foram implementados, testados, comparados entre si e com o solver CPLEX. A eficiÃncia computacional dos algoritmos propostos, especialmente a relaxaÃÃo lagrangeana, à competitiva com a do CPLEX, e superior em vÃrios casos. Alguns desses algoritmos foram adaptados para o problema MD-MST e seu correlato DC-MST (este Ãltimo onde a restriÃÃo sobre os centrais à de grau mÃximo). Quando comparamos os resultados computacionais com a literatura
description The Min-Degree Constrained Minimum Spannig Tree - MD-MST is to find a minimum spanning tree of a graph where each vertex is a leaf of the tree or satisfies a constraint of minimum degree. The leaf vertices are called terminals and the others are the central vertices. We define and study a variation of this problem, which we denote MDF-MST, where the terminal and central vertices are fixed. We show that the problem is NP-Hard and is in FPT, parameterized by the number of central vertices. We also identify cases where the problem becomes polynomial. We propose several integer programming formulations for the problem and compare the quality of lower bound generated by their linear relaxations. We propose and teste a Lagrangian Relaxation for the problem, which we also use to define Lagrangian heuristics. We define greedy heuristics, a VND Local search and a VNS heuristic. We present a Bendersâs Decomposition. We propose a new general heuristic that combines ingredients from the Bendersâs decomposition with subgradient method, which we call subgradient heuristic. We apply this heuristic to the MDF-MST. All these algorithms have been implemented, tested and compared among them and with the CPLEX solver. The computational efficiency of the proposed algorithms, especially the Lagrangian heuristics, is comparable with that of CPLEX, and even better in several cases. Some of these algorithms were adapted for the MD-MST and DC-MST (inthelatter,thedegreeconstraintisofmaximumdegree). Whencomparingthecomputational results with the literature, we conclude that the algorithms are competitive.
publishDate 2014
dc.date.issued.fl_str_mv 2014-07-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13199
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13199
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295197668311040