Genetic Algorithm for the solution of majority problem

Detalhes bibliográficos
Autor(a) principal: Hygor Piaget Monteiro Melo
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7145
Resumo: Many natural and social systems exhibit globally organized behavior without the aid of a centralized control. Examples of such decentralized systems include conventions and norms, social learning in animals and humans, as well as fads, rumors and revolts. Examples are also abundant in biology: the evasive behavior of animals in large groups, such as fish and birds, show a great synchronicity even in the absence of an leader. In order to understand these decentralized systems, one must first understand strategies for global coordination that use only local information. This work explores the use of Genetic Algorithms in the creation of naturally efficient strategies in noisy environments. Genetic Algorithms are an important new tool in problem solving, and offer insight into how evolution may work. By using what is known about genetic algorithms, one can discover more about evolution and its mechanisms. The density classification task is used here to test strategy success, and revealed to be a good test for system-wide coordination and global information processing. Since it is very difficult to evolve highly fit rules when the number of neighbors $k$ is greater than 5, this suggests that evolution may build complex solutions based on solutions to simpler problems. Using this idea, we propose a method to promote rules increasing $k$. Based on the evolution of initial rules with few neighbors and using noise as evolutionary pressure, we were able to find efficient rules for a large number of neighbors, under the condition of a very high noise level. We find that the evolved rules are more robust to noisy environment than the majority rule. This increased efficiency at higher noise levels can be explained in terms of the larger weight given by these rules to the information of the evolving agent itself (not influenced by noise) than to the information obtained from its neighbors. As a consequence, the agents using these evolved rules tend to keep their own states, unless the great majority of their neighbors disagree with them, showing a persistence behavior that can be seen in social experiments.
id UFC_d3ebbc8e222b2c5d9ba3b906d1b2f389
oai_identifier_str oai:www.teses.ufc.br:4516
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisGenetic Algorithm for the solution of majority problemAlgoritmo genÃtico para a soluÃÃo do problema da maioria.2011-08-19Andrà Auto Moreira46142193300http://lattes.cnpq.br/4417117445512655 03291428366http://lattes.cnpq.br/0710453712689207Hygor Piaget Monteiro MeloUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em FÃsicaUFCBRFISICA ESTATISTICA E TERMODINAMICAMany natural and social systems exhibit globally organized behavior without the aid of a centralized control. Examples of such decentralized systems include conventions and norms, social learning in animals and humans, as well as fads, rumors and revolts. Examples are also abundant in biology: the evasive behavior of animals in large groups, such as fish and birds, show a great synchronicity even in the absence of an leader. In order to understand these decentralized systems, one must first understand strategies for global coordination that use only local information. This work explores the use of Genetic Algorithms in the creation of naturally efficient strategies in noisy environments. Genetic Algorithms are an important new tool in problem solving, and offer insight into how evolution may work. By using what is known about genetic algorithms, one can discover more about evolution and its mechanisms. The density classification task is used here to test strategy success, and revealed to be a good test for system-wide coordination and global information processing. Since it is very difficult to evolve highly fit rules when the number of neighbors $k$ is greater than 5, this suggests that evolution may build complex solutions based on solutions to simpler problems. Using this idea, we propose a method to promote rules increasing $k$. Based on the evolution of initial rules with few neighbors and using noise as evolutionary pressure, we were able to find efficient rules for a large number of neighbors, under the condition of a very high noise level. We find that the evolved rules are more robust to noisy environment than the majority rule. This increased efficiency at higher noise levels can be explained in terms of the larger weight given by these rules to the information of the evolving agent itself (not influenced by noise) than to the information obtained from its neighbors. As a consequence, the agents using these evolved rules tend to keep their own states, unless the great majority of their neighbors disagree with them, showing a persistence behavior that can be seen in social experiments.Muitos sistemas naturais e sociais exibem comportamento globalmente organizado sem a presenÃa de um controle central. Exemplos incluem convenÃÃes e normas, aprendizado social em animais e humanos, assim como modismos, boatos e revoltas. Exemplos em biologia tambÃm sÃo abundantes: o comportamento evasivo de animais em grandes grupos, como peixes e pÃssaros, mostram uma grande sincronia mesmo na ausÃncia de um lÃder. A fim de entender esses sistemas descentralizados, precisamos estudar primeiramente estratÃgias de coordenaÃÃo global que utilizam apenas informaÃÃes locais. Esse trabalho explora o uso do Algoritmo GenÃtico na obtenÃÃo de estratÃgias naturalmente eficientes em ambientes ruidosos. O Algoritmo GenÃtico à uma nova ferramenta importante na soluÃÃo de problemas deste tipo, e oferece indÃcios de como a evoluÃÃo deve atuar. Usando o que à conhecido sobre Algoritmos GenÃticos, podemos descobrir mais sobre a evoluÃÃo e seus mecanismos. A classificaÃÃo por densidade à utilizada para testar o sucesso de estratÃgias, pois trata-se de um bom teste para coordenaÃÃo global e processamento global de informaÃÃes. Como à muito difÃcil evoluir regras com grande eficiÃncia quando o nÃmero de vizinhos $k$ for maior que 5, isso sugere que a evoluÃÃo deve construir soluÃÃes complexas baseadas em soluÃÃes de problemas simples. Usando essa ideia propomos um mÃtodo de promover as regras aumentando o $k$. Com base na evoluÃÃo inicial de regras com poucos vizinhos e usando o ruÃdo como "pressÃo" evolutiva, nÃs fomos capazes de achar regras eficientes para um grande nÃmero de vizinhos, submetidas a condiÃÃo de um alto nÃvel de ruÃdo. Achamos que as regras evoluÃdas sÃo mais robustas a ambientes ruidosos do que a regra da maioria. A alta eficiÃncia para grandes valores do ruÃdo pode ser explicada em termos do maior peso dado por essas regras à informaÃÃo da prÃpria cÃlula (nÃo influenciada pelo ruÃdo) do que a informaÃÃo obtida atravÃs vizinhos. Como consequÃncia, as cÃlulas que empregam essas regras evoluÃdas tendem a manter seus prÃprios estados, atà que uma grande maioria dos vizinhos discordem delas, mostrando um comportamento de persistÃncia que pode ser encontrado em experimentos sociais.Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7145application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:20:10Zmail@mail.com -
dc.title.en.fl_str_mv Genetic Algorithm for the solution of majority problem
dc.title.alternative.pt.fl_str_mv Algoritmo genÃtico para a soluÃÃo do problema da maioria.
title Genetic Algorithm for the solution of majority problem
spellingShingle Genetic Algorithm for the solution of majority problem
Hygor Piaget Monteiro Melo
FISICA ESTATISTICA E TERMODINAMICA
title_short Genetic Algorithm for the solution of majority problem
title_full Genetic Algorithm for the solution of majority problem
title_fullStr Genetic Algorithm for the solution of majority problem
title_full_unstemmed Genetic Algorithm for the solution of majority problem
title_sort Genetic Algorithm for the solution of majority problem
author Hygor Piaget Monteiro Melo
author_facet Hygor Piaget Monteiro Melo
author_role author
dc.contributor.advisor1.fl_str_mv Andrà Auto Moreira
dc.contributor.advisor1ID.fl_str_mv 46142193300
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4417117445512655
dc.contributor.authorID.fl_str_mv 03291428366
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0710453712689207
dc.contributor.author.fl_str_mv Hygor Piaget Monteiro Melo
contributor_str_mv Andrà Auto Moreira
dc.subject.cnpq.fl_str_mv FISICA ESTATISTICA E TERMODINAMICA
topic FISICA ESTATISTICA E TERMODINAMICA
dc.description.sponsorship.fl_txt_mv Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv Many natural and social systems exhibit globally organized behavior without the aid of a centralized control. Examples of such decentralized systems include conventions and norms, social learning in animals and humans, as well as fads, rumors and revolts. Examples are also abundant in biology: the evasive behavior of animals in large groups, such as fish and birds, show a great synchronicity even in the absence of an leader. In order to understand these decentralized systems, one must first understand strategies for global coordination that use only local information. This work explores the use of Genetic Algorithms in the creation of naturally efficient strategies in noisy environments. Genetic Algorithms are an important new tool in problem solving, and offer insight into how evolution may work. By using what is known about genetic algorithms, one can discover more about evolution and its mechanisms. The density classification task is used here to test strategy success, and revealed to be a good test for system-wide coordination and global information processing. Since it is very difficult to evolve highly fit rules when the number of neighbors $k$ is greater than 5, this suggests that evolution may build complex solutions based on solutions to simpler problems. Using this idea, we propose a method to promote rules increasing $k$. Based on the evolution of initial rules with few neighbors and using noise as evolutionary pressure, we were able to find efficient rules for a large number of neighbors, under the condition of a very high noise level. We find that the evolved rules are more robust to noisy environment than the majority rule. This increased efficiency at higher noise levels can be explained in terms of the larger weight given by these rules to the information of the evolving agent itself (not influenced by noise) than to the information obtained from its neighbors. As a consequence, the agents using these evolved rules tend to keep their own states, unless the great majority of their neighbors disagree with them, showing a persistence behavior that can be seen in social experiments.
Muitos sistemas naturais e sociais exibem comportamento globalmente organizado sem a presenÃa de um controle central. Exemplos incluem convenÃÃes e normas, aprendizado social em animais e humanos, assim como modismos, boatos e revoltas. Exemplos em biologia tambÃm sÃo abundantes: o comportamento evasivo de animais em grandes grupos, como peixes e pÃssaros, mostram uma grande sincronia mesmo na ausÃncia de um lÃder. A fim de entender esses sistemas descentralizados, precisamos estudar primeiramente estratÃgias de coordenaÃÃo global que utilizam apenas informaÃÃes locais. Esse trabalho explora o uso do Algoritmo GenÃtico na obtenÃÃo de estratÃgias naturalmente eficientes em ambientes ruidosos. O Algoritmo GenÃtico à uma nova ferramenta importante na soluÃÃo de problemas deste tipo, e oferece indÃcios de como a evoluÃÃo deve atuar. Usando o que à conhecido sobre Algoritmos GenÃticos, podemos descobrir mais sobre a evoluÃÃo e seus mecanismos. A classificaÃÃo por densidade à utilizada para testar o sucesso de estratÃgias, pois trata-se de um bom teste para coordenaÃÃo global e processamento global de informaÃÃes. Como à muito difÃcil evoluir regras com grande eficiÃncia quando o nÃmero de vizinhos $k$ for maior que 5, isso sugere que a evoluÃÃo deve construir soluÃÃes complexas baseadas em soluÃÃes de problemas simples. Usando essa ideia propomos um mÃtodo de promover as regras aumentando o $k$. Com base na evoluÃÃo inicial de regras com poucos vizinhos e usando o ruÃdo como "pressÃo" evolutiva, nÃs fomos capazes de achar regras eficientes para um grande nÃmero de vizinhos, submetidas a condiÃÃo de um alto nÃvel de ruÃdo. Achamos que as regras evoluÃdas sÃo mais robustas a ambientes ruidosos do que a regra da maioria. A alta eficiÃncia para grandes valores do ruÃdo pode ser explicada em termos do maior peso dado por essas regras à informaÃÃo da prÃpria cÃlula (nÃo influenciada pelo ruÃdo) do que a informaÃÃo obtida atravÃs vizinhos. Como consequÃncia, as cÃlulas que empregam essas regras evoluÃdas tendem a manter seus prÃprios estados, atà que uma grande maioria dos vizinhos discordem delas, mostrando um comportamento de persistÃncia que pode ser encontrado em experimentos sociais.
description Many natural and social systems exhibit globally organized behavior without the aid of a centralized control. Examples of such decentralized systems include conventions and norms, social learning in animals and humans, as well as fads, rumors and revolts. Examples are also abundant in biology: the evasive behavior of animals in large groups, such as fish and birds, show a great synchronicity even in the absence of an leader. In order to understand these decentralized systems, one must first understand strategies for global coordination that use only local information. This work explores the use of Genetic Algorithms in the creation of naturally efficient strategies in noisy environments. Genetic Algorithms are an important new tool in problem solving, and offer insight into how evolution may work. By using what is known about genetic algorithms, one can discover more about evolution and its mechanisms. The density classification task is used here to test strategy success, and revealed to be a good test for system-wide coordination and global information processing. Since it is very difficult to evolve highly fit rules when the number of neighbors $k$ is greater than 5, this suggests that evolution may build complex solutions based on solutions to simpler problems. Using this idea, we propose a method to promote rules increasing $k$. Based on the evolution of initial rules with few neighbors and using noise as evolutionary pressure, we were able to find efficient rules for a large number of neighbors, under the condition of a very high noise level. We find that the evolved rules are more robust to noisy environment than the majority rule. This increased efficiency at higher noise levels can be explained in terms of the larger weight given by these rules to the information of the evolving agent itself (not influenced by noise) than to the information obtained from its neighbors. As a consequence, the agents using these evolved rules tend to keep their own states, unless the great majority of their neighbors disagree with them, showing a persistence behavior that can be seen in social experiments.
publishDate 2011
dc.date.issued.fl_str_mv 2011-08-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7145
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7145
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em FÃsica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295155298500608