EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat

Detalhes bibliográficos
Autor(a) principal: NatÃlia Medeiros do Nascimento
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12409
Resumo: Ao longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares.
id UFC_dd1d34c91c1848947a11321690687c46
oai_identifier_str oai:www.teses.ufc.br:8503
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisEquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de FermatDiophantine equations and the method of secants and tangents of Fermat2014-04-26Josà Alberto Duarte Maia71511717300http://lattes.cnpq.br/8536841991972701 Francisco Regis Vieira Alves42397162334http://lattes.cnpq.br/3288513376230522 Marcelo Ferreira de Melo89509706353http://lattes.cnpq.br/5064883781827911 01769622390http://lattes.cnpq.br/1235135656052361NatÃlia Medeiros do NascimentoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)UFCBRequaÃÃes diofantinas lineares ternas pitagÃricas mÃtodo das secantes tangentes de Fermatlinear diophantine equations pythagorean tender method of secants tangents of FermatMATEMATICAAo longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares.Over the past decades, the transmission of mathematical knowledge in basic education has undergone several changes. The âTeaching Traditionalâ math was based on memorizing formulas, so there mechanization in problem solving where the student was seen as a liability to be process. The new vision of education that seeks to signify exposed to room content, motivated the choice of this theme, as diophantine equations involving situations problems can be easily noticed in our daily lives. The objective of this work is an opportunity for a realization of an advisory reading for the teacher of basic education, and assert that these equations can be applied in basic education as a tool that encourages the logical thinking, reasoning, understanding and mathematical interpretation. The formulation of this material which is divided into five chapters was through literature review through descriptive research. The introduction comprises the first chapter. The second chapter deals with the Legacy of Diophantus: life and works, emphasizing his work entitled âArithmeticaâ which contributed significantly to the development of number theory. The third chapter deals with linear Diophantine equations in n variables. The fourth chapter discusses the Pythagorean tender, Fermatâs of secants and Tangents method, in finding rational solutions to equations with rational coefficients, of the form ax2 + by2 = c and a particular case Fermatâs Last Theorem. The fifth chapter is composed of problems on linear diophantine equations.CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12409application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:25:32Zmail@mail.com -
dc.title.pt.fl_str_mv EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
dc.title.alternative.en.fl_str_mv Diophantine equations and the method of secants and tangents of Fermat
title EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
spellingShingle EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
NatÃlia Medeiros do Nascimento
equaÃÃes diofantinas lineares
ternas pitagÃricas
mÃtodo das secantes
tangentes de Fermat
linear diophantine equations
pythagorean tender
method of secants
tangents of Fermat
MATEMATICA
title_short EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
title_full EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
title_fullStr EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
title_full_unstemmed EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
title_sort EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat
author NatÃlia Medeiros do Nascimento
author_facet NatÃlia Medeiros do Nascimento
author_role author
dc.contributor.advisor1.fl_str_mv Josà Alberto Duarte Maia
dc.contributor.advisor1ID.fl_str_mv 71511717300
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8536841991972701
dc.contributor.advisor-co1.fl_str_mv Francisco Regis Vieira Alves
dc.contributor.advisor-co1ID.fl_str_mv 42397162334
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3288513376230522
dc.contributor.referee1.fl_str_mv Marcelo Ferreira de Melo
dc.contributor.referee1ID.fl_str_mv 89509706353
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5064883781827911
dc.contributor.authorID.fl_str_mv 01769622390
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1235135656052361
dc.contributor.author.fl_str_mv NatÃlia Medeiros do Nascimento
contributor_str_mv Josà Alberto Duarte Maia
Francisco Regis Vieira Alves
Marcelo Ferreira de Melo
dc.subject.por.fl_str_mv equaÃÃes diofantinas lineares
ternas pitagÃricas
mÃtodo das secantes
tangentes de Fermat
topic equaÃÃes diofantinas lineares
ternas pitagÃricas
mÃtodo das secantes
tangentes de Fermat
linear diophantine equations
pythagorean tender
method of secants
tangents of Fermat
MATEMATICA
dc.subject.eng.fl_str_mv linear diophantine equations
pythagorean tender
method of secants
tangents of Fermat
dc.subject.cnpq.fl_str_mv MATEMATICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv Ao longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares.
dc.description.abstract.eng.fl_txt_mv Over the past decades, the transmission of mathematical knowledge in basic education has undergone several changes. The âTeaching Traditionalâ math was based on memorizing formulas, so there mechanization in problem solving where the student was seen as a liability to be process. The new vision of education that seeks to signify exposed to room content, motivated the choice of this theme, as diophantine equations involving situations problems can be easily noticed in our daily lives. The objective of this work is an opportunity for a realization of an advisory reading for the teacher of basic education, and assert that these equations can be applied in basic education as a tool that encourages the logical thinking, reasoning, understanding and mathematical interpretation. The formulation of this material which is divided into five chapters was through literature review through descriptive research. The introduction comprises the first chapter. The second chapter deals with the Legacy of Diophantus: life and works, emphasizing his work entitled âArithmeticaâ which contributed significantly to the development of number theory. The third chapter deals with linear Diophantine equations in n variables. The fourth chapter discusses the Pythagorean tender, Fermatâs of secants and Tangents method, in finding rational solutions to equations with rational coefficients, of the form ax2 + by2 = c and a particular case Fermatâs Last Theorem. The fifth chapter is composed of problems on linear diophantine equations.
description Ao longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares.
publishDate 2014
dc.date.issued.fl_str_mv 2014-04-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12409
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12409
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT)
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295191722885120