Casamento de padrÃes e operadores morfolÃgicos adaptativos

Detalhes bibliográficos
Autor(a) principal: Magno PrudÃncio de Almeida Filho
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17230
Resumo: A morfologia matemÃtica à uma abordagem utilizada em problemas de processamento e anÃlise de imagens em que sÃo realizadas transformaÃÃes de um objeto (imagem) por padrÃes de formas prÃ-definidas. Tais transformaÃÃes sÃo efetuadas por operadores morfolÃgicos, sendo a erosÃo e a dilataÃÃo os operadores morfolÃgicos elementares. Neste trabalho à apresentado um mecanismo de aprendizagem destinado à geraÃÃo automÃtica de templates, a serem utilizados em operadores morfolÃgicos de casamento inexato de padrÃes (em que o casamento nÃo precisa ser perfeito). Esse modelo de operador à aqui denominado de Operador MorfolÃgico Adaptativo de Casamento de PadrÃes (OMACP), e combina o formalismo da morfologia matemÃtica atravÃs de ELUTs (Elementary Look-Up Tables) com tÃcnicas de aprendizagem de mÃquina. Os operadores morfolÃgicos para casamento de padrÃes via ELUTs jà descritos na literatura permitem o casamento inexato de padrÃes, ou detecÃÃo com folga, em imagens digitais atravÃs da definiÃÃo de um intervalo em torno de um padrÃo de referÃncia. Esse intervalo aplicado em todos os pixels do padrÃo de referÃncia possui um valor constante e sua escolha depende de parÃmetros cujo ajuste normalmente à realizado tendo como base resultados empÃricos, alÃm de ser fortemente sensÃvel a idiossincrasia do usuÃrio. Este trabalho propÃe um mecanismo, baseado em parÃmetros estatÃsticos, que automatiza a escolha desse intervalo. AlÃm de nÃo considerÃ-lo mais um valor constante para todos os pixels do padrÃo de referÃncia. Tal mecanismo reduz assim a interferÃncia de um usuÃrio na definiÃÃo dos parÃmetros do operador morfolÃgico. Para comprovar a eficÃcia obtida com a inclusÃo tanto das tÃcnicas de aprendizagem quanto do mecanismo de escolha do intervalo em torno do padrÃo de referÃncia, foram realizados experimentos comparativos entre o OMACP proposto (com a inclusÃo das novas funcionalidades) com os operadores jà descritos na literatura sem essas alteraÃÃes.
id UFC_ed090eed76356e11a89ff0b17ca07dde
oai_identifier_str oai:www.teses.ufc.br:11166
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCasamento de padrÃes e operadores morfolÃgicos adaptativosTemplate matching and adaptive morphological operators2016-02-26Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 Francisco de Assis Tavares Ferreira da Silva28158989420http://lattes.cnpq.br/0504582828060516Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/8902002461422112Bismark Claure Torrico00925127981 Thelmo Pontes de AraÃjo0812859987997504424315http://lattes.cnpq.br/8359824700467616Magno PrudÃncio de Almeida FilhoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBRMorfologia matemÃtica Reconhecimento de padrÃes Operadores adaptativos InteligÃncia artificialMathematical morphology Pattern recognition Adaptive operator Digital imagesENGENHARIA ELETRICAA morfologia matemÃtica à uma abordagem utilizada em problemas de processamento e anÃlise de imagens em que sÃo realizadas transformaÃÃes de um objeto (imagem) por padrÃes de formas prÃ-definidas. Tais transformaÃÃes sÃo efetuadas por operadores morfolÃgicos, sendo a erosÃo e a dilataÃÃo os operadores morfolÃgicos elementares. Neste trabalho à apresentado um mecanismo de aprendizagem destinado à geraÃÃo automÃtica de templates, a serem utilizados em operadores morfolÃgicos de casamento inexato de padrÃes (em que o casamento nÃo precisa ser perfeito). Esse modelo de operador à aqui denominado de Operador MorfolÃgico Adaptativo de Casamento de PadrÃes (OMACP), e combina o formalismo da morfologia matemÃtica atravÃs de ELUTs (Elementary Look-Up Tables) com tÃcnicas de aprendizagem de mÃquina. Os operadores morfolÃgicos para casamento de padrÃes via ELUTs jà descritos na literatura permitem o casamento inexato de padrÃes, ou detecÃÃo com folga, em imagens digitais atravÃs da definiÃÃo de um intervalo em torno de um padrÃo de referÃncia. Esse intervalo aplicado em todos os pixels do padrÃo de referÃncia possui um valor constante e sua escolha depende de parÃmetros cujo ajuste normalmente à realizado tendo como base resultados empÃricos, alÃm de ser fortemente sensÃvel a idiossincrasia do usuÃrio. Este trabalho propÃe um mecanismo, baseado em parÃmetros estatÃsticos, que automatiza a escolha desse intervalo. AlÃm de nÃo considerÃ-lo mais um valor constante para todos os pixels do padrÃo de referÃncia. Tal mecanismo reduz assim a interferÃncia de um usuÃrio na definiÃÃo dos parÃmetros do operador morfolÃgico. Para comprovar a eficÃcia obtida com a inclusÃo tanto das tÃcnicas de aprendizagem quanto do mecanismo de escolha do intervalo em torno do padrÃo de referÃncia, foram realizados experimentos comparativos entre o OMACP proposto (com a inclusÃo das novas funcionalidades) com os operadores jà descritos na literatura sem essas alteraÃÃes.Mathematical morphology is an approach applied in processing and image analysis problems that performs transformations in an object (image) by patterns of predefined forms. Such transformations are called morphological operators, with erosion and dilation being the elementary morphological operators. This work presents a machine learning mechanism applied for the automatic generation of templates, to be used by inexact template matching morphological operators. This model of operator is called Template Matching Adaptive Morphological Operator (OMACP), and combines the formalism of mathematical morphology through ELUTs (Elementary Look-Up Tables) with machine learning techniques. The ELUTs based template matching morphological operators already described in the literature allow inexact pattern recognition in digital images by defining a range around a reference pattern. This range has a constant value that is applied to all pixels of reference patterns, and its choice depends on parameters whose adjustments is usually performed based on empirical results, besides being highly sensitive to user idiosyncrasies. This work also proposes a mechanism, based on statistical parameters, which automates the choice of these range. Besides not consider it a constant value for all pixels of reference pattern. Such mechanism reduces the interference of a user to define the parameters of the morphological operator. To prove the effectiveness achieved with the inclusion of learning techniques and the choices mechanism of the range around the pattern reference, were performed comparative experiments between the proposed OMACP (with the inclusion of new features) with operators already studied without these features.Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17230application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:30:36Zmail@mail.com -
dc.title.pt.fl_str_mv Casamento de padrÃes e operadores morfolÃgicos adaptativos
dc.title.alternative.en.fl_str_mv Template matching and adaptive morphological operators
title Casamento de padrÃes e operadores morfolÃgicos adaptativos
spellingShingle Casamento de padrÃes e operadores morfolÃgicos adaptativos
Magno PrudÃncio de Almeida Filho
Morfologia matemÃtica
Reconhecimento de padrÃes
Operadores adaptativos
InteligÃncia artificial
Mathematical morphology
Pattern recognition
Adaptive operator
Digital images
ENGENHARIA ELETRICA
title_short Casamento de padrÃes e operadores morfolÃgicos adaptativos
title_full Casamento de padrÃes e operadores morfolÃgicos adaptativos
title_fullStr Casamento de padrÃes e operadores morfolÃgicos adaptativos
title_full_unstemmed Casamento de padrÃes e operadores morfolÃgicos adaptativos
title_sort Casamento de padrÃes e operadores morfolÃgicos adaptativos
author Magno PrudÃncio de Almeida Filho
author_facet Magno PrudÃncio de Almeida Filho
author_role author
dc.contributor.advisor1.fl_str_mv Arthur PlÃnio de Souza Braga
dc.contributor.advisor1ID.fl_str_mv 42395194387
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1473823107869382
dc.contributor.advisor-co1.fl_str_mv Francisco de Assis Tavares Ferreira da Silva
dc.contributor.advisor-co1ID.fl_str_mv 28158989420
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0504582828060516
dc.contributor.referee1.fl_str_mv Guilherme de Alencar Barreto
dc.contributor.referee1ID.fl_str_mv 32841450368
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8902002461422112
dc.contributor.referee2.fl_str_mv Bismark Claure Torrico
dc.contributor.referee2ID.fl_str_mv 00925127981
dc.contributor.referee3.fl_str_mv Thelmo Pontes de AraÃjo
dc.contributor.referee3ID.fl_str_mv 08128599879
dc.contributor.authorID.fl_str_mv 97504424315
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8359824700467616
dc.contributor.author.fl_str_mv Magno PrudÃncio de Almeida Filho
contributor_str_mv Arthur PlÃnio de Souza Braga
Francisco de Assis Tavares Ferreira da Silva
Guilherme de Alencar Barreto
Bismark Claure Torrico
Thelmo Pontes de AraÃjo
dc.subject.por.fl_str_mv Morfologia matemÃtica
Reconhecimento de padrÃes
Operadores adaptativos
InteligÃncia artificial
topic Morfologia matemÃtica
Reconhecimento de padrÃes
Operadores adaptativos
InteligÃncia artificial
Mathematical morphology
Pattern recognition
Adaptive operator
Digital images
ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Mathematical morphology
Pattern recognition
Adaptive operator
Digital images
dc.subject.cnpq.fl_str_mv ENGENHARIA ELETRICA
dc.description.sponsorship.fl_txt_mv Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv A morfologia matemÃtica à uma abordagem utilizada em problemas de processamento e anÃlise de imagens em que sÃo realizadas transformaÃÃes de um objeto (imagem) por padrÃes de formas prÃ-definidas. Tais transformaÃÃes sÃo efetuadas por operadores morfolÃgicos, sendo a erosÃo e a dilataÃÃo os operadores morfolÃgicos elementares. Neste trabalho à apresentado um mecanismo de aprendizagem destinado à geraÃÃo automÃtica de templates, a serem utilizados em operadores morfolÃgicos de casamento inexato de padrÃes (em que o casamento nÃo precisa ser perfeito). Esse modelo de operador à aqui denominado de Operador MorfolÃgico Adaptativo de Casamento de PadrÃes (OMACP), e combina o formalismo da morfologia matemÃtica atravÃs de ELUTs (Elementary Look-Up Tables) com tÃcnicas de aprendizagem de mÃquina. Os operadores morfolÃgicos para casamento de padrÃes via ELUTs jà descritos na literatura permitem o casamento inexato de padrÃes, ou detecÃÃo com folga, em imagens digitais atravÃs da definiÃÃo de um intervalo em torno de um padrÃo de referÃncia. Esse intervalo aplicado em todos os pixels do padrÃo de referÃncia possui um valor constante e sua escolha depende de parÃmetros cujo ajuste normalmente à realizado tendo como base resultados empÃricos, alÃm de ser fortemente sensÃvel a idiossincrasia do usuÃrio. Este trabalho propÃe um mecanismo, baseado em parÃmetros estatÃsticos, que automatiza a escolha desse intervalo. AlÃm de nÃo considerÃ-lo mais um valor constante para todos os pixels do padrÃo de referÃncia. Tal mecanismo reduz assim a interferÃncia de um usuÃrio na definiÃÃo dos parÃmetros do operador morfolÃgico. Para comprovar a eficÃcia obtida com a inclusÃo tanto das tÃcnicas de aprendizagem quanto do mecanismo de escolha do intervalo em torno do padrÃo de referÃncia, foram realizados experimentos comparativos entre o OMACP proposto (com a inclusÃo das novas funcionalidades) com os operadores jà descritos na literatura sem essas alteraÃÃes.
dc.description.abstract.eng.fl_txt_mv Mathematical morphology is an approach applied in processing and image analysis problems that performs transformations in an object (image) by patterns of predefined forms. Such transformations are called morphological operators, with erosion and dilation being the elementary morphological operators. This work presents a machine learning mechanism applied for the automatic generation of templates, to be used by inexact template matching morphological operators. This model of operator is called Template Matching Adaptive Morphological Operator (OMACP), and combines the formalism of mathematical morphology through ELUTs (Elementary Look-Up Tables) with machine learning techniques. The ELUTs based template matching morphological operators already described in the literature allow inexact pattern recognition in digital images by defining a range around a reference pattern. This range has a constant value that is applied to all pixels of reference patterns, and its choice depends on parameters whose adjustments is usually performed based on empirical results, besides being highly sensitive to user idiosyncrasies. This work also proposes a mechanism, based on statistical parameters, which automates the choice of these range. Besides not consider it a constant value for all pixels of reference pattern. Such mechanism reduces the interference of a user to define the parameters of the morphological operator. To prove the effectiveness achieved with the inclusion of learning techniques and the choices mechanism of the range around the pattern reference, were performed comparative experiments between the proposed OMACP (with the inclusion of new features) with operators already studied without these features.
description A morfologia matemÃtica à uma abordagem utilizada em problemas de processamento e anÃlise de imagens em que sÃo realizadas transformaÃÃes de um objeto (imagem) por padrÃes de formas prÃ-definidas. Tais transformaÃÃes sÃo efetuadas por operadores morfolÃgicos, sendo a erosÃo e a dilataÃÃo os operadores morfolÃgicos elementares. Neste trabalho à apresentado um mecanismo de aprendizagem destinado à geraÃÃo automÃtica de templates, a serem utilizados em operadores morfolÃgicos de casamento inexato de padrÃes (em que o casamento nÃo precisa ser perfeito). Esse modelo de operador à aqui denominado de Operador MorfolÃgico Adaptativo de Casamento de PadrÃes (OMACP), e combina o formalismo da morfologia matemÃtica atravÃs de ELUTs (Elementary Look-Up Tables) com tÃcnicas de aprendizagem de mÃquina. Os operadores morfolÃgicos para casamento de padrÃes via ELUTs jà descritos na literatura permitem o casamento inexato de padrÃes, ou detecÃÃo com folga, em imagens digitais atravÃs da definiÃÃo de um intervalo em torno de um padrÃo de referÃncia. Esse intervalo aplicado em todos os pixels do padrÃo de referÃncia possui um valor constante e sua escolha depende de parÃmetros cujo ajuste normalmente à realizado tendo como base resultados empÃricos, alÃm de ser fortemente sensÃvel a idiossincrasia do usuÃrio. Este trabalho propÃe um mecanismo, baseado em parÃmetros estatÃsticos, que automatiza a escolha desse intervalo. AlÃm de nÃo considerÃ-lo mais um valor constante para todos os pixels do padrÃo de referÃncia. Tal mecanismo reduz assim a interferÃncia de um usuÃrio na definiÃÃo dos parÃmetros do operador morfolÃgico. Para comprovar a eficÃcia obtida com a inclusÃo tanto das tÃcnicas de aprendizagem quanto do mecanismo de escolha do intervalo em torno do padrÃo de referÃncia, foram realizados experimentos comparativos entre o OMACP proposto (com a inclusÃo das novas funcionalidades) com os operadores jà descritos na literatura sem essas alteraÃÃes.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17230
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17230
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295223979180032