Detecção de Spam em Imagens Usando Redes Neurais Artificiais.

Detalhes bibliográficos
Autor(a) principal: SANCHES, Bruno Crivelari
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/551
Resumo: O correio eletrônico ou e-mail é um dos meios de comunicação mais utilizados na atualidade. No entanto, sua grande popularidade e sua arquitetura tornaram-no alvo de mensagens spam. Mensagens spam carregam, usualmente, informes publicitários, conteúdos fraudulentos ou maliciosos e são enviadas de forma indiscriminada a muitos usuários sem que estes desejem recebê-las. Acarretam diversos prejuízos aos usuários do sistema de e-mail e desperdiçam os recursos de rede das instituições. Para eliminar estas mensagens, foram criados diversos sistemas anti-spam que analisam o conteúdo textual das mensagens e classificam-nas. Devido ao bom desempenho destes filtros, mensagens spam passaram a ocorrer em imagens. Isto tornou inútil o uso de sistemas baseados apenas em análise do conteúdo textual, fomentando, assim, o desenvolvimento dos sistemas anti-spam de imagens. O processamento de imagens é bem mais custoso computacionalmente que o processamento textual e os resultados dos sistemas anti-spam de imagens têm sido inferiores aos dos sistemas textuais. Outra dificuldade da pesquisa na área de sistemas anti-spam de imagens é devida à pouca disponibilidade de bases de dados públicas, o que dificulta a avaliação de resultados experimentais. Este trabalho propõe um sistema anti-spam de imagens que faz uso de diversos métodos de extração de características de imagens e de um modelo neural artificial, para a classificação dos e-mails. Os métodos de extração são avaliados de forma individual e de forma combinada. O modelo neural é avaliado de forma exaustiva utilizando-se bases de dados disponíveis publicamente. A utilização destas bases de dados é descrita em detalhes, de forma a facilitar a reprodução dos resultados. Além de se analisar a capacidade de classificação do sistema proposto, este trabalho avalia seus custos computacionais, incluindo os custos para a extração de características das imagens e para a classificação destas. Os resultados obtidos mostram-se promissores tanto em termos das taxas de classificações corretas e de falsos positivos produzidas pelo sistema anti-spam, quanto em termos de seu custo computacional.
id UFEI_58e82c82990537ab0806fc67aa9b24a7
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/551
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2014-08-082016-09-01T17:30:03Z2016-09-01T17:30:03ZSANCHES, Bruno Crivelari. Detecção de Spam em Imagens Usando Redes Neurais Artificiais. 2014. 113 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação) – Universidade Federal de Itajubá, Itajubá, 2014.https://repositorio.unifei.edu.br/jspui/handle/123456789/551O correio eletrônico ou e-mail é um dos meios de comunicação mais utilizados na atualidade. No entanto, sua grande popularidade e sua arquitetura tornaram-no alvo de mensagens spam. Mensagens spam carregam, usualmente, informes publicitários, conteúdos fraudulentos ou maliciosos e são enviadas de forma indiscriminada a muitos usuários sem que estes desejem recebê-las. Acarretam diversos prejuízos aos usuários do sistema de e-mail e desperdiçam os recursos de rede das instituições. Para eliminar estas mensagens, foram criados diversos sistemas anti-spam que analisam o conteúdo textual das mensagens e classificam-nas. Devido ao bom desempenho destes filtros, mensagens spam passaram a ocorrer em imagens. Isto tornou inútil o uso de sistemas baseados apenas em análise do conteúdo textual, fomentando, assim, o desenvolvimento dos sistemas anti-spam de imagens. O processamento de imagens é bem mais custoso computacionalmente que o processamento textual e os resultados dos sistemas anti-spam de imagens têm sido inferiores aos dos sistemas textuais. Outra dificuldade da pesquisa na área de sistemas anti-spam de imagens é devida à pouca disponibilidade de bases de dados públicas, o que dificulta a avaliação de resultados experimentais. Este trabalho propõe um sistema anti-spam de imagens que faz uso de diversos métodos de extração de características de imagens e de um modelo neural artificial, para a classificação dos e-mails. Os métodos de extração são avaliados de forma individual e de forma combinada. O modelo neural é avaliado de forma exaustiva utilizando-se bases de dados disponíveis publicamente. A utilização destas bases de dados é descrita em detalhes, de forma a facilitar a reprodução dos resultados. Além de se analisar a capacidade de classificação do sistema proposto, este trabalho avalia seus custos computacionais, incluindo os custos para a extração de características das imagens e para a classificação destas. Os resultados obtidos mostram-se promissores tanto em termos das taxas de classificações corretas e de falsos positivos produzidas pelo sistema anti-spam, quanto em termos de seu custo computacional.Detecção de Spam em Imagens Usando Redes Neurais Artificiais.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisItajubáUniversidade Federal de Itajubá113 p.E-mailMensagens spamSistemas anti-spam de imagensModelo neural artificialCARPINTEIRO, Otávio Augusto SalgadoMOREIRA, Edmilson MarmoCiência e Tecnologia da ComputaçãoSistemas de ComputaçãoSANCHES, Bruno CrivelariPrograma de Pós-Graduação: Mestrado - Ciência e Tecnologia da ComputaçãoIESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informaçãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALdissertacao_sanches_2014.pdfdissertacao_sanches_2014.pdfapplication/pdf1841482https://repositorio.unifei.edu.br/jspui/bitstream/123456789/551/1/dissertacao_sanches_2014.pdf16da6d32f63f065c009429c7441479c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/551/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/5512024-03-15 08:35:34.36oai:repositorio.unifei.edu.br:123456789/551Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-03-15T11:35:34Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
title Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
spellingShingle Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
SANCHES, Bruno Crivelari
title_short Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
title_full Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
title_fullStr Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
title_full_unstemmed Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
title_sort Detecção de Spam em Imagens Usando Redes Neurais Artificiais.
author SANCHES, Bruno Crivelari
author_facet SANCHES, Bruno Crivelari
author_role author
dc.contributor.author.fl_str_mv SANCHES, Bruno Crivelari
description O correio eletrônico ou e-mail é um dos meios de comunicação mais utilizados na atualidade. No entanto, sua grande popularidade e sua arquitetura tornaram-no alvo de mensagens spam. Mensagens spam carregam, usualmente, informes publicitários, conteúdos fraudulentos ou maliciosos e são enviadas de forma indiscriminada a muitos usuários sem que estes desejem recebê-las. Acarretam diversos prejuízos aos usuários do sistema de e-mail e desperdiçam os recursos de rede das instituições. Para eliminar estas mensagens, foram criados diversos sistemas anti-spam que analisam o conteúdo textual das mensagens e classificam-nas. Devido ao bom desempenho destes filtros, mensagens spam passaram a ocorrer em imagens. Isto tornou inútil o uso de sistemas baseados apenas em análise do conteúdo textual, fomentando, assim, o desenvolvimento dos sistemas anti-spam de imagens. O processamento de imagens é bem mais custoso computacionalmente que o processamento textual e os resultados dos sistemas anti-spam de imagens têm sido inferiores aos dos sistemas textuais. Outra dificuldade da pesquisa na área de sistemas anti-spam de imagens é devida à pouca disponibilidade de bases de dados públicas, o que dificulta a avaliação de resultados experimentais. Este trabalho propõe um sistema anti-spam de imagens que faz uso de diversos métodos de extração de características de imagens e de um modelo neural artificial, para a classificação dos e-mails. Os métodos de extração são avaliados de forma individual e de forma combinada. O modelo neural é avaliado de forma exaustiva utilizando-se bases de dados disponíveis publicamente. A utilização destas bases de dados é descrita em detalhes, de forma a facilitar a reprodução dos resultados. Além de se analisar a capacidade de classificação do sistema proposto, este trabalho avalia seus custos computacionais, incluindo os custos para a extração de características das imagens e para a classificação destas. Os resultados obtidos mostram-se promissores tanto em termos das taxas de classificações corretas e de falsos positivos produzidas pelo sistema anti-spam, quanto em termos de seu custo computacional.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-08
dc.date.available.fl_str_mv 2016-09-01T17:30:03Z
dc.date.accessioned.fl_str_mv 2016-09-01T17:30:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANCHES, Bruno Crivelari. Detecção de Spam em Imagens Usando Redes Neurais Artificiais. 2014. 113 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação) – Universidade Federal de Itajubá, Itajubá, 2014.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/551
identifier_str_mv SANCHES, Bruno Crivelari. Detecção de Spam em Imagens Usando Redes Neurais Artificiais. 2014. 113 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação) – Universidade Federal de Itajubá, Itajubá, 2014.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/551
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
dc.publisher.department.fl_str_mv IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/551/1/dissertacao_sanches_2014.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/551/2/license.txt
bitstream.checksum.fl_str_mv 16da6d32f63f065c009429c7441479c4
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863237517443072