Classificação automática de batidas cardíacas utilizando parâmetros de hjorth.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFEI (RIUNIFEI) |
Texto Completo: | https://repositorio.unifei.edu.br/jspui/handle/123456789/1483 |
Resumo: | Este trabalho apresenta métodos para processamento de sinais de eletrocardiograma (ECG), visando realizar a classificação automática de batidas cardíacas com bom desempenho e baixo custo computacional. Em especial, uma nova abordagem para a extração de características é apresentada, na qual o sinal de ECG é caracterizado por valores de intervalos entre batidas (intervalos R-R), dados de amplitude do sinal e, principalmente, parâmetros de Hjorth. Os parâmetros de Hjorth foram utilizados anteriormente em uma variedade de áreas de pesquisa, especialmente para caracterização de sinais cerebrais, mas sua aplicação no processamento de sinal de ECG é ainda pouco explorada. Além disso, este trabalho introduz uma nova estratégia para a solução do problema de segmentação de batidas cardíacas, que evita que informações de batidas adjacentes à batida de interesse sejam levadas em consideração, aumentando o desempenho de classificação. Para o teste das técnicas propostas, utilizou-se o banco de dados norte-americano MIT-BIH de arritmias e classificadores do tipo máquina de vetor de suporte (SVM). Recomendações da Associação para o Avanço da Instrumentação Médica (AAMI) foram seguidas, de modo que o trabalho pudesse ser comparado a outros trabalhos importantes recentes. O modelo proposto apresenta índices de desempenho compatíveis ou superiores a cinco outros trabalhos de metodologia semelhante utilizados para comparação, que compõem o estado da arte nesse campo. Os resultados obtidos nos testes indicam que as técnicas propostas neste trabalho podem ser aplicadas com sucesso ao problema da classificação automática do batimento cardíaco. Além disso, esta nova abordagem tem baixo custo computacional, o que permite sua posterior implementação em dispositivos de hardware com recursos limitados, como FPGA, sistemas embarcados e circuitos integrados. |
id |
UFEI_be3f9a4e118b8775ac03566ece5442e6 |
---|---|
oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/1483 |
network_acronym_str |
UFEI |
network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
repository_id_str |
7044 |
spelling |
2018-06-072018-07-19T17:13:25Z2018-07-19T17:13:25ZLEITE, João Paulo Reus Rodrigues. Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. 2018. 111 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Itajubá, Itajubá, 2018.https://repositorio.unifei.edu.br/jspui/handle/123456789/1483Este trabalho apresenta métodos para processamento de sinais de eletrocardiograma (ECG), visando realizar a classificação automática de batidas cardíacas com bom desempenho e baixo custo computacional. Em especial, uma nova abordagem para a extração de características é apresentada, na qual o sinal de ECG é caracterizado por valores de intervalos entre batidas (intervalos R-R), dados de amplitude do sinal e, principalmente, parâmetros de Hjorth. Os parâmetros de Hjorth foram utilizados anteriormente em uma variedade de áreas de pesquisa, especialmente para caracterização de sinais cerebrais, mas sua aplicação no processamento de sinal de ECG é ainda pouco explorada. Além disso, este trabalho introduz uma nova estratégia para a solução do problema de segmentação de batidas cardíacas, que evita que informações de batidas adjacentes à batida de interesse sejam levadas em consideração, aumentando o desempenho de classificação. Para o teste das técnicas propostas, utilizou-se o banco de dados norte-americano MIT-BIH de arritmias e classificadores do tipo máquina de vetor de suporte (SVM). Recomendações da Associação para o Avanço da Instrumentação Médica (AAMI) foram seguidas, de modo que o trabalho pudesse ser comparado a outros trabalhos importantes recentes. O modelo proposto apresenta índices de desempenho compatíveis ou superiores a cinco outros trabalhos de metodologia semelhante utilizados para comparação, que compõem o estado da arte nesse campo. Os resultados obtidos nos testes indicam que as técnicas propostas neste trabalho podem ser aplicadas com sucesso ao problema da classificação automática do batimento cardíaco. Além disso, esta nova abordagem tem baixo custo computacional, o que permite sua posterior implementação em dispositivos de hardware com recursos limitados, como FPGA, sistemas embarcados e circuitos integrados.Classificação automática de batidas cardíacas utilizando parâmetros de hjorth.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUniversidade Federal de Itajubá111 p.Eletrocardiograma (ECG)Processamento de sinaisParâmetros de HjorthSegmentação de BatidasSVMElectrocardiogram (ECG)Signal ProcessingHjorth ParametersHeartbeat SegmentationMORENO, Robson LuizEngenharia ElétricaCircuitos EletrônicosLEITE, João Paulo Reus RodriguesPrograma de Pós-Graduação: Doutorado - Engenharia ElétricaIESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informaçãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_2018023.pdftese_2018023.pdfapplication/pdf4232269https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1483/1/tese_2018023.pdf223d289700d7aabbe8c6889775067649MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1483/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/14832024-02-16 14:48:34.456oai:repositorio.unifei.edu.br:123456789/1483Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-02-16T17:48:34Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.pt_BR.fl_str_mv |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
title |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
spellingShingle |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. LEITE, João Paulo Reus Rodrigues |
title_short |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
title_full |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
title_fullStr |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
title_full_unstemmed |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
title_sort |
Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. |
author |
LEITE, João Paulo Reus Rodrigues |
author_facet |
LEITE, João Paulo Reus Rodrigues |
author_role |
author |
dc.contributor.author.fl_str_mv |
LEITE, João Paulo Reus Rodrigues |
description |
Este trabalho apresenta métodos para processamento de sinais de eletrocardiograma (ECG), visando realizar a classificação automática de batidas cardíacas com bom desempenho e baixo custo computacional. Em especial, uma nova abordagem para a extração de características é apresentada, na qual o sinal de ECG é caracterizado por valores de intervalos entre batidas (intervalos R-R), dados de amplitude do sinal e, principalmente, parâmetros de Hjorth. Os parâmetros de Hjorth foram utilizados anteriormente em uma variedade de áreas de pesquisa, especialmente para caracterização de sinais cerebrais, mas sua aplicação no processamento de sinal de ECG é ainda pouco explorada. Além disso, este trabalho introduz uma nova estratégia para a solução do problema de segmentação de batidas cardíacas, que evita que informações de batidas adjacentes à batida de interesse sejam levadas em consideração, aumentando o desempenho de classificação. Para o teste das técnicas propostas, utilizou-se o banco de dados norte-americano MIT-BIH de arritmias e classificadores do tipo máquina de vetor de suporte (SVM). Recomendações da Associação para o Avanço da Instrumentação Médica (AAMI) foram seguidas, de modo que o trabalho pudesse ser comparado a outros trabalhos importantes recentes. O modelo proposto apresenta índices de desempenho compatíveis ou superiores a cinco outros trabalhos de metodologia semelhante utilizados para comparação, que compõem o estado da arte nesse campo. Os resultados obtidos nos testes indicam que as técnicas propostas neste trabalho podem ser aplicadas com sucesso ao problema da classificação automática do batimento cardíaco. Além disso, esta nova abordagem tem baixo custo computacional, o que permite sua posterior implementação em dispositivos de hardware com recursos limitados, como FPGA, sistemas embarcados e circuitos integrados. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-06-07 |
dc.date.available.fl_str_mv |
2018-07-19T17:13:25Z |
dc.date.accessioned.fl_str_mv |
2018-07-19T17:13:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LEITE, João Paulo Reus Rodrigues. Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. 2018. 111 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Itajubá, Itajubá, 2018. |
dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1483 |
identifier_str_mv |
LEITE, João Paulo Reus Rodrigues. Classificação automática de batidas cardíacas utilizando parâmetros de hjorth. 2018. 111 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Itajubá, Itajubá, 2018. |
url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1483 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Doutorado - Engenharia Elétrica |
dc.publisher.department.fl_str_mv |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1483/1/tese_2018023.pdf https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1483/2/license.txt |
bitstream.checksum.fl_str_mv |
223d289700d7aabbe8c6889775067649 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
_version_ |
1801863211784339456 |