Sample size to evaluate the degree of multicollinearity in rye morphological traits
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/10549 |
Resumo: | Investigation of multicollinearity allows parameters in multivariate analysis to be estimated with higher precision and with biological interpretation. In order to generate reliable estimates of the degree of multicollinearity, it is necessary to use appropriate sample size. Thus, the objectives of this study were to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (CN), correlation matrix determinant (DET), and variance inflation factor (VIF) - in morphological traits of rye and to verify the variability of the sample size between the indicators. Five and three uniformity trials were conducted with the cultivars BRS Progresso and Temprano, respectively. Eight morphological traits were evaluated in 780 plants in eight trials. For each trial, 22 cases were selected among the 28 formed by the combination of eight traits, taken six by six, totaling 176 cases. In each case, 197 sample sizes were planned (20, 25, 30, ..., 1,000 plants) and in each size 2,000 resampling procedures with replacement were performed, CN, DET, and VIF were determined and the average among 2,000 estimates was calculated. For each case and indicator (CN, DET, and VIF), the sample size was determined through three models: modified maximum curvature method and linear and quadratic segmented models with plateau response. There is variability between sample sizes between indicators, with larger sample sizes required for DET, followed by CN and VIF, in that order, with at least 180, 116 and 85 plants, respectively. |
id |
UFERSA-1_922898d1391fcb73e97ac3c8dd41617a |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/10549 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
Sample size to evaluate the degree of multicollinearity in rye morphological traitsTamanho de amostra para avaliação do grau de multicolinearidade em caracteres morfológicos de centeioCorrelação. Análise multivariada. Dimensionamento amostral. Secale cereale L.Correlation. Multivariate analysis. Sampling design. Secale cereale L.Investigation of multicollinearity allows parameters in multivariate analysis to be estimated with higher precision and with biological interpretation. In order to generate reliable estimates of the degree of multicollinearity, it is necessary to use appropriate sample size. Thus, the objectives of this study were to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (CN), correlation matrix determinant (DET), and variance inflation factor (VIF) - in morphological traits of rye and to verify the variability of the sample size between the indicators. Five and three uniformity trials were conducted with the cultivars BRS Progresso and Temprano, respectively. Eight morphological traits were evaluated in 780 plants in eight trials. For each trial, 22 cases were selected among the 28 formed by the combination of eight traits, taken six by six, totaling 176 cases. In each case, 197 sample sizes were planned (20, 25, 30, ..., 1,000 plants) and in each size 2,000 resampling procedures with replacement were performed, CN, DET, and VIF were determined and the average among 2,000 estimates was calculated. For each case and indicator (CN, DET, and VIF), the sample size was determined through three models: modified maximum curvature method and linear and quadratic segmented models with plateau response. There is variability between sample sizes between indicators, with larger sample sizes required for DET, followed by CN and VIF, in that order, with at least 180, 116 and 85 plants, respectively.A investigação da multicolinearidade permite que parâmetros em análises multivariadas sejam estimados com maior precisão e com interpretação biológica. Para ter confiabilidade nas estimativas do grau de multicolinearidade, é necessário utilizar adequado tamanho de amostra. Assim, os objetivos deste trabalho foram determinar o tamanho de amostra (número de plantas) necessário para a estimação dos indicadores do grau de multicolinearidade - número de condição (NC), determinante da matriz de correlação (DET) e fator de inflação da variância (FIV) - em caracteres morfológicos de centeio e verificar a variabilidade do tamanho de amostra entre os indicadores. Foram conduzidos cinco e três ensaios de uniformidade com as cultivares BRS Progresso e Temprano, respectivamente. Foram avaliados oito caracteres morfológicos em 780 plantas em oito ensaios. Para cada ensaio, foram selecionados 22 casos entre os 28 formados pela combinação de oito caracteres, tomados seis a seis, totalizando 176 casos. Para cada caso, foram planejados 197 tamanhos de amostra (20, 25, 30, ..., 1.000 plantas) e para cada tamanho foram realizadas 2.000 reamostragens, com reposição, determinados o NC, DET e FIV e calculada a média das 2.000 estimativas. Após, para cada caso e indicador, foi determinado o tamanho de amostra, por meio de três modelos: método da máxima curvatura modificado e modelos linear e quadrático segmentados com resposta em platô. Há variabilidade entre os tamanhos de amostra entre os indicadores, com necessidade de maiores tamanhos de amostra para DET, seguido de NC e FIV, nessa ordem, com no mínimo de 180, 116 e 85 plantas, respectivamente.Universidade Federal Rural do Semi-Árido2022-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1054910.1590/1983-21252023v36n123rcREVISTA CAATINGA; Vol. 36 No. 1 (2023); 215-225Revista Caatinga; v. 36 n. 1 (2023); 215-2251983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/10549/11087Copyright (c) 2022 Revista Caatingainfo:eu-repo/semantics/openAccessNeu, Ismael Mario MárcioCargnelutti Filho, AlbertoToebe, MarcosCarini, FernandaPezzini, Rafael VieiraSilveira, Daniela Lixinski2023-07-27T12:34:05Zoai:ojs.periodicos.ufersa.edu.br:article/10549Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:56.969295Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
Sample size to evaluate the degree of multicollinearity in rye morphological traits Tamanho de amostra para avaliação do grau de multicolinearidade em caracteres morfológicos de centeio |
title |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
spellingShingle |
Sample size to evaluate the degree of multicollinearity in rye morphological traits Neu, Ismael Mario Márcio Correlação. Análise multivariada. Dimensionamento amostral. Secale cereale L. Correlation. Multivariate analysis. Sampling design. Secale cereale L. |
title_short |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
title_full |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
title_fullStr |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
title_full_unstemmed |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
title_sort |
Sample size to evaluate the degree of multicollinearity in rye morphological traits |
author |
Neu, Ismael Mario Márcio |
author_facet |
Neu, Ismael Mario Márcio Cargnelutti Filho, Alberto Toebe, Marcos Carini, Fernanda Pezzini, Rafael Vieira Silveira, Daniela Lixinski |
author_role |
author |
author2 |
Cargnelutti Filho, Alberto Toebe, Marcos Carini, Fernanda Pezzini, Rafael Vieira Silveira, Daniela Lixinski |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Neu, Ismael Mario Márcio Cargnelutti Filho, Alberto Toebe, Marcos Carini, Fernanda Pezzini, Rafael Vieira Silveira, Daniela Lixinski |
dc.subject.por.fl_str_mv |
Correlação. Análise multivariada. Dimensionamento amostral. Secale cereale L. Correlation. Multivariate analysis. Sampling design. Secale cereale L. |
topic |
Correlação. Análise multivariada. Dimensionamento amostral. Secale cereale L. Correlation. Multivariate analysis. Sampling design. Secale cereale L. |
description |
Investigation of multicollinearity allows parameters in multivariate analysis to be estimated with higher precision and with biological interpretation. In order to generate reliable estimates of the degree of multicollinearity, it is necessary to use appropriate sample size. Thus, the objectives of this study were to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (CN), correlation matrix determinant (DET), and variance inflation factor (VIF) - in morphological traits of rye and to verify the variability of the sample size between the indicators. Five and three uniformity trials were conducted with the cultivars BRS Progresso and Temprano, respectively. Eight morphological traits were evaluated in 780 plants in eight trials. For each trial, 22 cases were selected among the 28 formed by the combination of eight traits, taken six by six, totaling 176 cases. In each case, 197 sample sizes were planned (20, 25, 30, ..., 1,000 plants) and in each size 2,000 resampling procedures with replacement were performed, CN, DET, and VIF were determined and the average among 2,000 estimates was calculated. For each case and indicator (CN, DET, and VIF), the sample size was determined through three models: modified maximum curvature method and linear and quadratic segmented models with plateau response. There is variability between sample sizes between indicators, with larger sample sizes required for DET, followed by CN and VIF, in that order, with at least 180, 116 and 85 plants, respectively. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/10549 10.1590/1983-21252023v36n123rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/10549 |
identifier_str_mv |
10.1590/1983-21252023v36n123rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/10549/11087 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 36 No. 1 (2023); 215-225 Revista Caatinga; v. 36 n. 1 (2023); 215-225 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674029494042624 |