PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/6501 |
Resumo: | Genome-wide selection (GWS) uses simultaneously the effect of the thousands markers covering the entire genome to predict genomic breeding values for individuals under selection. The possible benefits of GWS are the reduction of the breeding cycle, increase in gains per unit of time, and decrease of costs. However, the success of the GWS is dependent on the choice of the method to predict the effects of markers. Thus, the objective of this work was to predict genomic breeding values (GEBV) through artificial neural networks (ANN), based on the estimation of the effect of the markers, compared to the Ridge Regression-Best Linear Unbiased Predictor/Genome Wide Selection (RR-BLUP/GWS). Simulations were performed by software R to provide correlations concerning ANN and RR-BLUP/GWS. The prediction methods were evaluated using correlations between phenotypic and genotypic values and predicted GEBV. The results showed the superiority of the ANN in predicting GEBV in simulations with higher and lower marker densities, with higher levels of linkage disequilibrium and heritability. |
id |
UFERSA-1_ff1cf050a97a91da43dfde3759c6f098 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/6501 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKSPREDIÇÃO DE VALORES FENOTÍPICOS E GENOTÍPICOS VIA RR-BLUP/GWS E REDES NEURAISPlant breeding. Correlation. Molecular markers.Melhoramento genético. Correlação. Marcadores moleculares.Genome-wide selection (GWS) uses simultaneously the effect of the thousands markers covering the entire genome to predict genomic breeding values for individuals under selection. The possible benefits of GWS are the reduction of the breeding cycle, increase in gains per unit of time, and decrease of costs. However, the success of the GWS is dependent on the choice of the method to predict the effects of markers. Thus, the objective of this work was to predict genomic breeding values (GEBV) through artificial neural networks (ANN), based on the estimation of the effect of the markers, compared to the Ridge Regression-Best Linear Unbiased Predictor/Genome Wide Selection (RR-BLUP/GWS). Simulations were performed by software R to provide correlations concerning ANN and RR-BLUP/GWS. The prediction methods were evaluated using correlations between phenotypic and genotypic values and predicted GEBV. The results showed the superiority of the ANN in predicting GEBV in simulations with higher and lower marker densities, with higher levels of linkage disequilibrium and heritability.A seleção genômica ampla (Genome Wide Selection - GWS) utiliza simultaneamente o efeito de milhares de marcadores cobrindo todo o genoma para predizer o valor genético genômico dos indivíduos no processo de seleção. Os possíveis benefícios de seu uso são a redução do ciclo de melhoramento, propiciando maior ganho por unidade de tempo e diminuição de custos. O sucesso da GWS está atrelado a escolha do método de predição dos efeitos dos marcadores. Assim, neste trabalho, visou-se aplicar as redes neurais artificiais (Artificial Neural Networks - ANNs), com a finalidade de predizer os valores genéticos genômicos (Genomic Breeding Values - GEBVs) baseado na estimação dos efeitos dos marcadores comparados a regressão de cumeeira – melhor preditor não viesado/seleção genômica ampla (Ridge Regression – Best Linear Unbiased Predictor/Genome Wide Selection – RR-BLUP/GWS). Foram efetuadas simulações por meio do software R, fornecendo as correlações referentes às ANNs e a RR-BLUP/GWS. Os métodos de predição foram avaliados utilizando correlações entre o valor fenotípico e valor genotípico com o valor genético genômico predito. Os resultados demonstraram superioridade das ANNs na predição dos GEBVs nos cenários com maior e menor densidade de marcadores, paralelo a níveis mais altos de desequilíbrio de ligação e maior herdabilidade.Universidade Federal Rural do Semi-Árido2018-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/650110.1590/1983-21252018v31n301rcREVISTA CAATINGA; Vol. 31 No. 3 (2018); 532-540Revista Caatinga; v. 31 n. 3 (2018); 532-5401983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/6501/pdfCopyright (c) 2018 Revista Caatingainfo:eu-repo/semantics/openAccessCoutinho, Alisson EsdrasNeder, Diogo GonçalvesSilva, Mairykon Coêlho daArcelino, Eliane CristinaBrito, Silvan Gomes deCarvalho Filho, José Luiz Sandes de2023-07-20T13:08:02Zoai:ojs.periodicos.ufersa.edu.br:article/6501Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:29.080219Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS PREDIÇÃO DE VALORES FENOTÍPICOS E GENOTÍPICOS VIA RR-BLUP/GWS E REDES NEURAIS |
title |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
spellingShingle |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS Coutinho, Alisson Esdras Plant breeding. Correlation. Molecular markers. Melhoramento genético. Correlação. Marcadores moleculares. |
title_short |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
title_full |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
title_fullStr |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
title_full_unstemmed |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
title_sort |
PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS |
author |
Coutinho, Alisson Esdras |
author_facet |
Coutinho, Alisson Esdras Neder, Diogo Gonçalves Silva, Mairykon Coêlho da Arcelino, Eliane Cristina Brito, Silvan Gomes de Carvalho Filho, José Luiz Sandes de |
author_role |
author |
author2 |
Neder, Diogo Gonçalves Silva, Mairykon Coêlho da Arcelino, Eliane Cristina Brito, Silvan Gomes de Carvalho Filho, José Luiz Sandes de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Coutinho, Alisson Esdras Neder, Diogo Gonçalves Silva, Mairykon Coêlho da Arcelino, Eliane Cristina Brito, Silvan Gomes de Carvalho Filho, José Luiz Sandes de |
dc.subject.por.fl_str_mv |
Plant breeding. Correlation. Molecular markers. Melhoramento genético. Correlação. Marcadores moleculares. |
topic |
Plant breeding. Correlation. Molecular markers. Melhoramento genético. Correlação. Marcadores moleculares. |
description |
Genome-wide selection (GWS) uses simultaneously the effect of the thousands markers covering the entire genome to predict genomic breeding values for individuals under selection. The possible benefits of GWS are the reduction of the breeding cycle, increase in gains per unit of time, and decrease of costs. However, the success of the GWS is dependent on the choice of the method to predict the effects of markers. Thus, the objective of this work was to predict genomic breeding values (GEBV) through artificial neural networks (ANN), based on the estimation of the effect of the markers, compared to the Ridge Regression-Best Linear Unbiased Predictor/Genome Wide Selection (RR-BLUP/GWS). Simulations were performed by software R to provide correlations concerning ANN and RR-BLUP/GWS. The prediction methods were evaluated using correlations between phenotypic and genotypic values and predicted GEBV. The results showed the superiority of the ANN in predicting GEBV in simulations with higher and lower marker densities, with higher levels of linkage disequilibrium and heritability. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/6501 10.1590/1983-21252018v31n301rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/6501 |
identifier_str_mv |
10.1590/1983-21252018v31n301rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/6501/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 31 No. 3 (2018); 532-540 Revista Caatinga; v. 31 n. 3 (2018); 532-540 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674026606264320 |