Utilização de random forest para estimar o volume de madeira em pátios de estocagem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/12500 |
Resumo: | The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images. |
id |
UFES_156ff70dbad835beef547308e9ccb777 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/12500 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Silva, Gilson Fernandes dahttps://orcid.org/0000000178536284http://lattes.cnpq.br/8643263800313625Lobato, Lucas José Teodorohttps://orcid.org/000000026781053Xhttp://lattes.cnpq.br/3913238304233510Soares, Carlos Pedro BoechatVieira, Giovanni Correia2024-05-29T20:55:21Z2024-05-29T20:55:21Z2023-10-26The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images.O setor florestal brasileiro vem se destacando em relação aos outros setores devido aos investimentos, uso de novas tecnologias e condições edafoclimáticas favoráveis para o desenvolvimento das espécies florestais. Com esse crescimento as empresas florestais vêm buscando metodologias que possibilitem estimar o volume de madeira com maior rapidez e baixo custo operacional. Visto a dificuldade e erros cometidos ao utilizar os métodos tradicionais para aferição do volume de madeira em pátios de estocagem, o uso de imagens digitais surge como uma alternativa viável e rápida para estimar o volume de madeira. Apesar dos excelentes resultados utilizando imagens digitais para estimar o volume de madeira contido em pilhas, ainda são limitados os trabalhos que avaliam a acurácia desta metodologia utilizando imagens obtidas de um smartphone, assim como a forma correta de obtenção destas imagens. Devido estes fatores o objetivo deste trabalho foi estimar o volume de madeira de Eucalyptus em pátio de estocagem com imagens digitais obtidas com um smartphone utilizando Random Forest. Estas imagens foram obtidas em diferentes distâncias e inclinações. O trabalho foi realizado em um pátio de estocagem de uma serraria localizada no município de Ibitirama. Foram montadas 30 pilhas de madeira, sendo obtidas imagens digitais das duas faces das pilhas, à uma distância de 1,5; 2,5; 4,5 e 6,5 metros. Além disso, foram obtidas imagens com o smartphone inclinado horizontalmente (10°,20° e 30°) e verticalmente (5°, 7° e 10°) para as distâncias de 2,5; 4,5 e 6,5 metros. Após a obtenção das imagens digitais, foi treinado um modelo de aprendizado de máquinas (Random Forest), para identificar a classe madeira e objeto de referência das imagens utilizando o ambiente de programação R. Após o processamento das imagens avaliou-se que as imagens obtidas a 6,5 e 4,5 metros da pilha tiveram maior acurácia (2,30% e 3,40%) no volume estimado se comparado com as imagens obtidas à 2,5 e 1,5 m (9,29% e 17,61%). Além disso, observou que quanto maior a inclinação do smartphone, maior o erro cometido ao estimar o volume de madeira contido nas pilhas montadas. De acordo com os dados obtidos, conclui-se que: (i) o uso de imagens digitais obtidas com um smartphone foi acurado para estimar o volume de madeira localizada em pátios de estocagem, (ii) imagens obtidas mais distantes das pilhas de madeira apresentaram maior acurácia se comparada as mais próximas, (iii) houve influência significativa na estimativa do volume de madeira, devido a inclinação do smartphone, sendo esta, menos acentuada nas imagens obtidas mais distantes da pilha de madeira, (iv) o deslocamento vertical do smartphone, apresentou maior influência na estimativa do volume de madeira, devido ao aumento da área seccional da madeira, ocasionada pela presença da lateral e parte superior dos toretes nestas imagens.Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)Texthttp://repositorio.ufes.br/handle/10/12500porUniversidade Federal do Espírito SantoMestrado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e EngenhariasRecursos Florestais e Engenharia FlorestalProcessamento de imagensEstimativa do volume de madeiraAprendizado de máquinasUso de diferentes distâncias na fotografia das pilhas montadasInclinação do smartphoneUtilização de random forest para estimar o volume de madeira em pátios de estocageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALLucasJoseTeodoroLobato-2023-Trabalho.pdfapplication/pdf1995078http://repositorio.ufes.br/bitstreams/26c6e0d6-cbcb-4c51-b496-b40adc668ce7/downloadb9398603ebcc10bb2de1a7b9c4bd532aMD5110/125002024-09-23 06:59:29.252oai:repositorio.ufes.br:10/12500http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:20.809284Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
title |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
spellingShingle |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem Lobato, Lucas José Teodoro Recursos Florestais e Engenharia Florestal Processamento de imagens Estimativa do volume de madeira Aprendizado de máquinas Uso de diferentes distâncias na fotografia das pilhas montadas Inclinação do smartphone |
title_short |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
title_full |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
title_fullStr |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
title_full_unstemmed |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
title_sort |
Utilização de random forest para estimar o volume de madeira em pátios de estocagem |
author |
Lobato, Lucas José Teodoro |
author_facet |
Lobato, Lucas José Teodoro |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/000000026781053X |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/3913238304233510 |
dc.contributor.advisor1.fl_str_mv |
Silva, Gilson Fernandes da |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000000178536284 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8643263800313625 |
dc.contributor.author.fl_str_mv |
Lobato, Lucas José Teodoro |
dc.contributor.referee1.fl_str_mv |
Soares, Carlos Pedro Boechat |
dc.contributor.referee2.fl_str_mv |
Vieira, Giovanni Correia |
contributor_str_mv |
Silva, Gilson Fernandes da Soares, Carlos Pedro Boechat Vieira, Giovanni Correia |
dc.subject.cnpq.fl_str_mv |
Recursos Florestais e Engenharia Florestal |
topic |
Recursos Florestais e Engenharia Florestal Processamento de imagens Estimativa do volume de madeira Aprendizado de máquinas Uso de diferentes distâncias na fotografia das pilhas montadas Inclinação do smartphone |
dc.subject.por.fl_str_mv |
Processamento de imagens Estimativa do volume de madeira Aprendizado de máquinas Uso de diferentes distâncias na fotografia das pilhas montadas Inclinação do smartphone |
description |
The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-10-26 |
dc.date.accessioned.fl_str_mv |
2024-05-29T20:55:21Z |
dc.date.available.fl_str_mv |
2024-05-29T20:55:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/12500 |
url |
http://repositorio.ufes.br/handle/10/12500 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Ciências Florestais |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Florestais |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Agrárias e Engenharias |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Ciências Florestais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/26c6e0d6-cbcb-4c51-b496-b40adc668ce7/download |
bitstream.checksum.fl_str_mv |
b9398603ebcc10bb2de1a7b9c4bd532a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022570563239936 |