Utilização de random forest para estimar o volume de madeira em pátios de estocagem

Detalhes bibliográficos
Autor(a) principal: Lobato, Lucas José Teodoro
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/12500
Resumo: The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images.
id UFES_156ff70dbad835beef547308e9ccb777
oai_identifier_str oai:repositorio.ufes.br:10/12500
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Silva, Gilson Fernandes dahttps://orcid.org/0000000178536284http://lattes.cnpq.br/8643263800313625Lobato, Lucas José Teodorohttps://orcid.org/000000026781053Xhttp://lattes.cnpq.br/3913238304233510Soares, Carlos Pedro BoechatVieira, Giovanni Correia2024-05-29T20:55:21Z2024-05-29T20:55:21Z2023-10-26The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images.O setor florestal brasileiro vem se destacando em relação aos outros setores devido aos investimentos, uso de novas tecnologias e condições edafoclimáticas favoráveis para o desenvolvimento das espécies florestais. Com esse crescimento as empresas florestais vêm buscando metodologias que possibilitem estimar o volume de madeira com maior rapidez e baixo custo operacional. Visto a dificuldade e erros cometidos ao utilizar os métodos tradicionais para aferição do volume de madeira em pátios de estocagem, o uso de imagens digitais surge como uma alternativa viável e rápida para estimar o volume de madeira. Apesar dos excelentes resultados utilizando imagens digitais para estimar o volume de madeira contido em pilhas, ainda são limitados os trabalhos que avaliam a acurácia desta metodologia utilizando imagens obtidas de um smartphone, assim como a forma correta de obtenção destas imagens. Devido estes fatores o objetivo deste trabalho foi estimar o volume de madeira de Eucalyptus em pátio de estocagem com imagens digitais obtidas com um smartphone utilizando Random Forest. Estas imagens foram obtidas em diferentes distâncias e inclinações. O trabalho foi realizado em um pátio de estocagem de uma serraria localizada no município de Ibitirama. Foram montadas 30 pilhas de madeira, sendo obtidas imagens digitais das duas faces das pilhas, à uma distância de 1,5; 2,5; 4,5 e 6,5 metros. Além disso, foram obtidas imagens com o smartphone inclinado horizontalmente (10°,20° e 30°) e verticalmente (5°, 7° e 10°) para as distâncias de 2,5; 4,5 e 6,5 metros. Após a obtenção das imagens digitais, foi treinado um modelo de aprendizado de máquinas (Random Forest), para identificar a classe madeira e objeto de referência das imagens utilizando o ambiente de programação R. Após o processamento das imagens avaliou-se que as imagens obtidas a 6,5 e 4,5 metros da pilha tiveram maior acurácia (2,30% e 3,40%) no volume estimado se comparado com as imagens obtidas à 2,5 e 1,5 m (9,29% e 17,61%). Além disso, observou que quanto maior a inclinação do smartphone, maior o erro cometido ao estimar o volume de madeira contido nas pilhas montadas. De acordo com os dados obtidos, conclui-se que: (i) o uso de imagens digitais obtidas com um smartphone foi acurado para estimar o volume de madeira localizada em pátios de estocagem, (ii) imagens obtidas mais distantes das pilhas de madeira apresentaram maior acurácia se comparada as mais próximas, (iii) houve influência significativa na estimativa do volume de madeira, devido a inclinação do smartphone, sendo esta, menos acentuada nas imagens obtidas mais distantes da pilha de madeira, (iv) o deslocamento vertical do smartphone, apresentou maior influência na estimativa do volume de madeira, devido ao aumento da área seccional da madeira, ocasionada pela presença da lateral e parte superior dos toretes nestas imagens.Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)Texthttp://repositorio.ufes.br/handle/10/12500porUniversidade Federal do Espírito SantoMestrado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e EngenhariasRecursos Florestais e Engenharia FlorestalProcessamento de imagensEstimativa do volume de madeiraAprendizado de máquinasUso de diferentes distâncias na fotografia das pilhas montadasInclinação do smartphoneUtilização de random forest para estimar o volume de madeira em pátios de estocageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALLucasJoseTeodoroLobato-2023-Trabalho.pdfapplication/pdf1995078http://repositorio.ufes.br/bitstreams/26c6e0d6-cbcb-4c51-b496-b40adc668ce7/downloadb9398603ebcc10bb2de1a7b9c4bd532aMD5110/125002024-09-23 06:59:29.252oai:repositorio.ufes.br:10/12500http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:20.809284Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Utilização de random forest para estimar o volume de madeira em pátios de estocagem
title Utilização de random forest para estimar o volume de madeira em pátios de estocagem
spellingShingle Utilização de random forest para estimar o volume de madeira em pátios de estocagem
Lobato, Lucas José Teodoro
Recursos Florestais e Engenharia Florestal
Processamento de imagens
Estimativa do volume de madeira
Aprendizado de máquinas
Uso de diferentes distâncias na fotografia das pilhas montadas
Inclinação do smartphone
title_short Utilização de random forest para estimar o volume de madeira em pátios de estocagem
title_full Utilização de random forest para estimar o volume de madeira em pátios de estocagem
title_fullStr Utilização de random forest para estimar o volume de madeira em pátios de estocagem
title_full_unstemmed Utilização de random forest para estimar o volume de madeira em pátios de estocagem
title_sort Utilização de random forest para estimar o volume de madeira em pátios de estocagem
author Lobato, Lucas José Teodoro
author_facet Lobato, Lucas José Teodoro
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/000000026781053X
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/3913238304233510
dc.contributor.advisor1.fl_str_mv Silva, Gilson Fernandes da
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000000178536284
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8643263800313625
dc.contributor.author.fl_str_mv Lobato, Lucas José Teodoro
dc.contributor.referee1.fl_str_mv Soares, Carlos Pedro Boechat
dc.contributor.referee2.fl_str_mv Vieira, Giovanni Correia
contributor_str_mv Silva, Gilson Fernandes da
Soares, Carlos Pedro Boechat
Vieira, Giovanni Correia
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
topic Recursos Florestais e Engenharia Florestal
Processamento de imagens
Estimativa do volume de madeira
Aprendizado de máquinas
Uso de diferentes distâncias na fotografia das pilhas montadas
Inclinação do smartphone
dc.subject.por.fl_str_mv Processamento de imagens
Estimativa do volume de madeira
Aprendizado de máquinas
Uso de diferentes distâncias na fotografia das pilhas montadas
Inclinação do smartphone
description The Brazilian forestry sector has stood out in relation to other sectors due to investments, use of new technologies and favorable soil and climate conditions for the development of forestry species. With this growth, forestry companies have been seeking methodologies that make it possible to estimate the volume of wood more quickly and with low operating costs. Given the difficulty and errors made when using traditional methods to measure the volume of wood in storage yards, the use of digital images appears as a viable and quick alternative to estimate the volume of wood. Despite the excellent results using digital images to estimate the volume of wood contained in piles, there is still limited work evaluating the accuracy of this methodology using images obtained from a smartphone, as well as the correct way to obtain these images. Due to these factors, the objective of this work was to estimate the volume of Eucalyptus wood in a storage yard with digital images obtained with a smartphone using Random Forest. These images were taken at different distances and inclinations. The work was carried out in a storage yard of a sawmill located in the municipality of Ibitirama. 30 piles of wood were assembled, and digital images were obtained of both sides of the piles, at a distance of 1.5; 2.5; 4.5 and 6.5 meters. Furthermore, images were obtained with the smartphone tilted horizontally (10°, 20° and 30°) and vertically (5°, 7° and 10°) for distances of 2.5; 4.5 and 6.5 meters. After obtaining the digital images, a machine learning model (Random Forest) was trained to identify the wood class and reference object of the images using the R programming environment. After processing the images, it was assessed that the images taken 6.5 and 4.5 meters from the stack had greater accuracy (2.30% and 3.40%) in the estimated volume compared to the images obtained at 2.5 and 1.5 m (9.29% and 17, 61%). Furthermore, it was observed that the greater the inclination of the smartphone, the greater the error made when estimating the volume of wood contained in the assembled piles. According to the data obtained, it is concluded that: (i) the use of digital images obtained with a smartphone was accurate to estimate the volume of wood located in storage yards, (ii) images obtained further away from the wood piles showed greater accuracy compared to the closest ones, (iii) there was a significant influence on the estimation of the volume of wood, due to the inclination of the smartphone, which is less accentuated in images obtained further away from the pile of wood, (iv) the vertical displacement of the smartphone , had a greater influence on the estimation of the volume of wood, due to the increase in the sectional area of the wood, caused by the presence of the side and upper part of the logs in these images.
publishDate 2023
dc.date.issued.fl_str_mv 2023-10-26
dc.date.accessioned.fl_str_mv 2024-05-29T20:55:21Z
dc.date.available.fl_str_mv 2024-05-29T20:55:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/12500
url http://repositorio.ufes.br/handle/10/12500
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Agrárias e Engenharias
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/26c6e0d6-cbcb-4c51-b496-b40adc668ce7/download
bitstream.checksum.fl_str_mv b9398603ebcc10bb2de1a7b9c4bd532a
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022570563239936