Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2

Detalhes bibliográficos
Autor(a) principal: Marques, Leon Muller
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/12497
Resumo: The public sector requires tools enabling systematic monitoring of cultivated forest areas. The use of remote sensing techniques facilitates large-scale surveillance by environmental agencies. The primary aim of this study was to create a methodology for identifying Eucalyptus stands' harvesting in the state of Espírito Santo. To conduct this monitoring, the Eucalyptus stands' database provided by a company was utilized. This database was constructed from visual analysis of Sentinel-2 images from the year 2020. The accuracy of the map was validated using the Kappa coefficient. Reference data for harvesting was also obtained through visual interpretation by analyzing a fiveyear history of Sentinel-2 images. Each year, the best images from each quarter were selected, identifying changes in spectral response from forest to exposed soil, indicating harvesting.In constructing the harvest detection algorithm, land cover classes provided by the European Space Agency (ESA) between 2019 and 2020 were used, employing the Scene Classification (SCL). This product offers land cover information for each Sentinel-2 image collected every five days. Subsequently, classes of interest (cloud, soil, and vegetation) were filtered. To acquire an image with fewer cloud cover instances, three temporal categories (monthly, bimonthly, and quarterly) were analyzed, generated by aggregating weekly images. SCL classes were intersected with Eucalyptus stands, determining the temporal category with the least cloud cover in the stand database.Once the best temporal category was defined, harvest detection relied on accumulating pixels classified as soil in each new image composition, evaluating the percentage of soil in the stand. Experimentations were conducted to define the best soil percentage threshold to consider a stand as harvested. To calculate algorithm accuracy, performance evaluations were done with two distinct strategies. Strategy 1 directly compared the algorithm-identified harvest month with the reference date for each Eucalyptus stand. Strategy 2 assessed algorithm accuracy by varying one month before and after the reference date. Subsequently, the impact of slope and stand size on algorithm accuracy was analyzed, calculating errors and successes for each slope class and stand size.The Eucalyptus map obtained a Kappa of 0.851 and an overall accuracy of 94%. The quarterly temporal category proved most effective in minimizing cloud effects, as no stand exhibited over 20% cloud coverage. Strategy 2 was the most efficient, achieving an algorithm accuracy of 84.5% with a 25% soil threshold. It was observed that higher slopes corresponded to lower accuracy, while stand size showed a direct relationship: larger size led to higher accuracy.The developed algorithm represents an advancement in applying new monitoring and oversight methods for Eucalyptus plantations, and it can be adopted by the public sector.
id UFES_41effb96d1d64e98a286b33a5a9b8017
oai_identifier_str oai:repositorio.ufes.br:10/12497
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Mendonça, Adriano Ribeiro dehttps://orcid.org/0000000333078579http://lattes.cnpq.br/9110967421921927Marques, Leon Mullerhttps://orcid.org/0000000277073190http://lattes.cnpq.br/9801928324329659Almeida, André Quintão deVieira, Carlos Antonio OliveiraSantos, Jeangelis Silva2024-05-29T20:55:21Z2024-05-29T20:55:21Z2023-10-31The public sector requires tools enabling systematic monitoring of cultivated forest areas. The use of remote sensing techniques facilitates large-scale surveillance by environmental agencies. The primary aim of this study was to create a methodology for identifying Eucalyptus stands' harvesting in the state of Espírito Santo. To conduct this monitoring, the Eucalyptus stands' database provided by a company was utilized. This database was constructed from visual analysis of Sentinel-2 images from the year 2020. The accuracy of the map was validated using the Kappa coefficient. Reference data for harvesting was also obtained through visual interpretation by analyzing a fiveyear history of Sentinel-2 images. Each year, the best images from each quarter were selected, identifying changes in spectral response from forest to exposed soil, indicating harvesting.In constructing the harvest detection algorithm, land cover classes provided by the European Space Agency (ESA) between 2019 and 2020 were used, employing the Scene Classification (SCL). This product offers land cover information for each Sentinel-2 image collected every five days. Subsequently, classes of interest (cloud, soil, and vegetation) were filtered. To acquire an image with fewer cloud cover instances, three temporal categories (monthly, bimonthly, and quarterly) were analyzed, generated by aggregating weekly images. SCL classes were intersected with Eucalyptus stands, determining the temporal category with the least cloud cover in the stand database.Once the best temporal category was defined, harvest detection relied on accumulating pixels classified as soil in each new image composition, evaluating the percentage of soil in the stand. Experimentations were conducted to define the best soil percentage threshold to consider a stand as harvested. To calculate algorithm accuracy, performance evaluations were done with two distinct strategies. Strategy 1 directly compared the algorithm-identified harvest month with the reference date for each Eucalyptus stand. Strategy 2 assessed algorithm accuracy by varying one month before and after the reference date. Subsequently, the impact of slope and stand size on algorithm accuracy was analyzed, calculating errors and successes for each slope class and stand size.The Eucalyptus map obtained a Kappa of 0.851 and an overall accuracy of 94%. The quarterly temporal category proved most effective in minimizing cloud effects, as no stand exhibited over 20% cloud coverage. Strategy 2 was the most efficient, achieving an algorithm accuracy of 84.5% with a 25% soil threshold. It was observed that higher slopes corresponded to lower accuracy, while stand size showed a direct relationship: larger size led to higher accuracy.The developed algorithm represents an advancement in applying new monitoring and oversight methods for Eucalyptus plantations, and it can be adopted by the public sector.O setor público necessita de ferramentas que possibilitem um acompanhamento sistemático das áreas de florestas cultivadas. O uso de técnicas de detecção remota viabiliza a vigilância em larga escala por parte dos órgãos ambientais. O objetivo principal deste estudo foi criar uma metodologia para identificar a colheita dos talhões de Eucalyptus no estado do Espírito Santo. Para realizar esse monitoramento, utilizouse a base de dados dos talhões de Eucalyptus fornecida por uma empresa. Essa base foi elaborada a partir da análise visual das imagens do Sentinel-2 do ano de 2020. A acurácia do mapa foi validada por meio do coeficiente Kappa. O dado de referência para a colheita também foi obtido por interpretação visual, analisando um histórico de cinco anos de imagens do Sentinel-2. Em cada ano, foram selecionadas as melhores imagens do trimestre, identificando a mudança na resposta espectral da imagem de floresta para solo exposto, indicando a colheita. Na construção do algoritmo de detecção da colheita foram utilizadas as classes de cobertura da terra fornecidas pela Agência Espacial Europeia (ESA), entre os anos de 2019 e 2020, utilizando a classificação de cena (SCL). Esse produto oferece a cobertura da terra para cada imagem do Sentinel-2 coletada a cada cinco dias. Posteriormente, foram filtradas as classes de interesse (nuvem, solo e vegetação). Para obter uma imagem com menor presença de nuvens, foram analisadas três categorias temporais (mensal, bimestral e trimestral), geradas pela agregação das imagens semanais. As classes SCL foram cruzadas com os de talhões de Eucalyptus, determinando em qual categoria a base de talhões apresentava menor quantidade de nuvem. Uma vez definida a melhor categoria temporal, a detecção da colheita baseou-se na acumulação dos pixels classificados como solo em cada nova composição de imagem, avaliando a porcentagem de solo no talhão. Experimentações foram realizadas para definir o melhor limite de porcentagem de solo para considerar o talhão como colhido. Para calcular a precisão do algoritmo, foram realizadas avaliações de desempenho com duas estratégias distintas. Estratégia 1 comparou o mês de colheita identificado pelo algoritmo diretamente com a data de referência para cada talhão de Eucalyptus. A estratégia 2 comparou o acerto do algoritmo variando um mês antes e um mês depois da data de referência. Em seguida, foi analisado o impacto da declividade e do tamanho do talhão na precisão do algoritmo, calculando os erros e acertos para cada classe de declividade e tamanho de talhão. O mapa de Eucalyptus obteve um Kappa de 0,851 e uma precisão global de 94%. A categoria temporal trimestral mostrou-se a mais eficaz para minimizar o efeito das nuvens, já que nenhum talhão apresentou mais de 20% de cobertura por nuvens. A estratégia 2 foi a mais eficiente, atingindo uma precisão do algoritmo de 84,5% com um limiar de 25% de solo. Constatou-se que quanto maior a declividade, menor a precisão, enquanto o tamanho do talhão apresentou uma relação direta, ou seja, quanto maior o tamanho, maior a precisão. O algoritmo desenvolvido representa um avanço na aplicação de novos métodos de monitoramento e fiscalização de plantações de Eucalyptus, podendo ser adotado pelo setor público.Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)Texthttp://repositorio.ufes.br/handle/10/12497porUniversidade Federal do Espírito SantoMestrado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e EngenhariasRecursos Florestais e Engenharia FlorestalEucaliptoSensoriamento remotoCobertura do soloFloresta plantadaMetodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALLeonMullerMarques-2023-Trabalho.pdfapplication/pdf3133158http://repositorio.ufes.br/bitstreams/a33abc55-eb2d-4ee3-b4b2-6fe5da3be3b2/downloadb942cec22565c9527e8490c944b24a5cMD5110/124972024-09-12 15:15:37.851oai:repositorio.ufes.br:10/12497http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:51:21.702110Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
title Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
spellingShingle Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
Marques, Leon Muller
Recursos Florestais e Engenharia Florestal
Eucalipto
Sensoriamento remoto
Cobertura do solo
Floresta plantada
title_short Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
title_full Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
title_fullStr Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
title_full_unstemmed Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
title_sort Metodologia para detecção de colheita de eucalyptus no Espírito Santo: uma abordagem com sentinel-2
author Marques, Leon Muller
author_facet Marques, Leon Muller
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000000277073190
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/9801928324329659
dc.contributor.advisor1.fl_str_mv Mendonça, Adriano Ribeiro de
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000000333078579
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9110967421921927
dc.contributor.author.fl_str_mv Marques, Leon Muller
dc.contributor.referee1.fl_str_mv Almeida, André Quintão de
dc.contributor.referee2.fl_str_mv Vieira, Carlos Antonio Oliveira
dc.contributor.referee3.fl_str_mv Santos, Jeangelis Silva
contributor_str_mv Mendonça, Adriano Ribeiro de
Almeida, André Quintão de
Vieira, Carlos Antonio Oliveira
Santos, Jeangelis Silva
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
topic Recursos Florestais e Engenharia Florestal
Eucalipto
Sensoriamento remoto
Cobertura do solo
Floresta plantada
dc.subject.por.fl_str_mv Eucalipto
Sensoriamento remoto
Cobertura do solo
Floresta plantada
description The public sector requires tools enabling systematic monitoring of cultivated forest areas. The use of remote sensing techniques facilitates large-scale surveillance by environmental agencies. The primary aim of this study was to create a methodology for identifying Eucalyptus stands' harvesting in the state of Espírito Santo. To conduct this monitoring, the Eucalyptus stands' database provided by a company was utilized. This database was constructed from visual analysis of Sentinel-2 images from the year 2020. The accuracy of the map was validated using the Kappa coefficient. Reference data for harvesting was also obtained through visual interpretation by analyzing a fiveyear history of Sentinel-2 images. Each year, the best images from each quarter were selected, identifying changes in spectral response from forest to exposed soil, indicating harvesting.In constructing the harvest detection algorithm, land cover classes provided by the European Space Agency (ESA) between 2019 and 2020 were used, employing the Scene Classification (SCL). This product offers land cover information for each Sentinel-2 image collected every five days. Subsequently, classes of interest (cloud, soil, and vegetation) were filtered. To acquire an image with fewer cloud cover instances, three temporal categories (monthly, bimonthly, and quarterly) were analyzed, generated by aggregating weekly images. SCL classes were intersected with Eucalyptus stands, determining the temporal category with the least cloud cover in the stand database.Once the best temporal category was defined, harvest detection relied on accumulating pixels classified as soil in each new image composition, evaluating the percentage of soil in the stand. Experimentations were conducted to define the best soil percentage threshold to consider a stand as harvested. To calculate algorithm accuracy, performance evaluations were done with two distinct strategies. Strategy 1 directly compared the algorithm-identified harvest month with the reference date for each Eucalyptus stand. Strategy 2 assessed algorithm accuracy by varying one month before and after the reference date. Subsequently, the impact of slope and stand size on algorithm accuracy was analyzed, calculating errors and successes for each slope class and stand size.The Eucalyptus map obtained a Kappa of 0.851 and an overall accuracy of 94%. The quarterly temporal category proved most effective in minimizing cloud effects, as no stand exhibited over 20% cloud coverage. Strategy 2 was the most efficient, achieving an algorithm accuracy of 84.5% with a 25% soil threshold. It was observed that higher slopes corresponded to lower accuracy, while stand size showed a direct relationship: larger size led to higher accuracy.The developed algorithm represents an advancement in applying new monitoring and oversight methods for Eucalyptus plantations, and it can be adopted by the public sector.
publishDate 2023
dc.date.issued.fl_str_mv 2023-10-31
dc.date.accessioned.fl_str_mv 2024-05-29T20:55:21Z
dc.date.available.fl_str_mv 2024-05-29T20:55:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/12497
url http://repositorio.ufes.br/handle/10/12497
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Agrárias e Engenharias
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/a33abc55-eb2d-4ee3-b4b2-6fe5da3be3b2/download
bitstream.checksum.fl_str_mv b942cec22565c9527e8490c944b24a5c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022500435525632