Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão

Detalhes bibliográficos
Autor(a) principal: Costa, Regina Mamede
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/7140
Resumo: From the physiological point of view, the knowledge of the anatomical and functional structure of the hand is essential for the understanding of the ostheomyoarticular mechanisms responsible for the movements of the fingers and their relation to the grasping functions. When injury occurs in one of these structures, the hand can be impaired, losing all functions as in the cases of amputation of the upper limb. The use of surface electromyography to control upper limb prostheses is an important clinical option, which offers the amputated an autonomy of control through the contraction of residual muscles. The functional biomechanical complexity of the hand involves a large area of representation in the cerebral cortex. In general, motor learning aims to maintain existing skills, the re-acquisition of lost skills and the learning of new skills. The goal of this Ph.D thesis was to propose and evaluate the application of a new experimental protocol for adaptation to the myoelectric prosthesis based on the distinction of hand movement patterns captured by sEMG of the remaining limb of amputees using myoelectric signals (SMEs).Ten upper limb amputees of both sexes, mean age 38.4 years ± 14.58, were evaluated. The inclusion criteria were: (1) transradial amputation or disarticulation of the wrist, unilateral or bilateral; (2) show no neurological or musculoskeletal disorder; (3) present no restriction of joint mobility. All of them were previously assessed including aspects of identification, anamnesis and physical examination. For MES acquisition, four Ag/AgCl active bipolar electrodes were used (TouchBionic ®). All the electrodes were placed according to the SENIAM (Surface Electromyography for the Non-Invasive Assessment of Muscle) recommendation. To the MES digitalization, an National Instrument NI USB-9001 acquisition system was used, and to the visualization of the MES, a digital processing software was developed, with interface to Matlab. The experimental protocol established a total of thirteen movements, which were grouped into two categories: GA (individual finger movements and hands opening and closure) and GB (grasping movements). The participants executed the tasks in three consecutive days. Two schemes were defined for the data capture: training phase and validation phase. The data concerning the first session (S1) were used to obtain a model of mechanical learning to the patterns classification, and the second (S2) and third (S3) sessions were used for the system validation. Although all tasks were performed in the same experiment, each category was studied and analyzed independently. Effectiveness (Acc), Kappa Coefficient (k) and Specificity (Sp) were calculated to evaluate the performance of each classifier of the executed movement. Positive-Negative Measurement (PNM) indicator was used to measure the performance of the thirteen proposed movements, and Goal Attainment Scale (GAS) was used to assess the extent to which individual objectives of each user were reached during the intervention. During the sessions, there were differences in the performance of the subjects during the proposed movements, which means that some participants could easily maintain repeated patterns, even with few training sessions, while others may need a longer training time to ensure good performance. Regarding the results of effectiveness, specificity, Kappa coefficient and PNM, the fact that the tasks of group A are simpler may explain the better performance of the volunteers in this group of tasks in relation to the performance in the tasks of group B (GB). On the other hand, the values obtained by GAS showed a satisfactory amount of correctness for the objectives outlined. Thus, this study showed that the subjects were able to perform muscular contractions, that is, perform the same movement with distinguishable MES patterns in the three experimental sessions, therefore, the proposed experimental design was validated in all the amputees of this study.
id UFES_65fb7160dea58127f6c269044b003ac5
oai_identifier_str oai:repositorio.ufes.br:10/7140
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Bastos Filho, Teodiano FreireCosta, Regina MamedeVargas, Cláudia DominguesZamora, Roberto SagaróDelis, Alberto LópezNogueira, Breno Valentim2018-08-01T21:35:20Z2018-08-012018-08-01T21:35:20Z2017-03-30From the physiological point of view, the knowledge of the anatomical and functional structure of the hand is essential for the understanding of the ostheomyoarticular mechanisms responsible for the movements of the fingers and their relation to the grasping functions. When injury occurs in one of these structures, the hand can be impaired, losing all functions as in the cases of amputation of the upper limb. The use of surface electromyography to control upper limb prostheses is an important clinical option, which offers the amputated an autonomy of control through the contraction of residual muscles. The functional biomechanical complexity of the hand involves a large area of representation in the cerebral cortex. In general, motor learning aims to maintain existing skills, the re-acquisition of lost skills and the learning of new skills. The goal of this Ph.D thesis was to propose and evaluate the application of a new experimental protocol for adaptation to the myoelectric prosthesis based on the distinction of hand movement patterns captured by sEMG of the remaining limb of amputees using myoelectric signals (SMEs).Ten upper limb amputees of both sexes, mean age 38.4 years ± 14.58, were evaluated. The inclusion criteria were: (1) transradial amputation or disarticulation of the wrist, unilateral or bilateral; (2) show no neurological or musculoskeletal disorder; (3) present no restriction of joint mobility. All of them were previously assessed including aspects of identification, anamnesis and physical examination. For MES acquisition, four Ag/AgCl active bipolar electrodes were used (TouchBionic ®). All the electrodes were placed according to the SENIAM (Surface Electromyography for the Non-Invasive Assessment of Muscle) recommendation. To the MES digitalization, an National Instrument NI USB-9001 acquisition system was used, and to the visualization of the MES, a digital processing software was developed, with interface to Matlab. The experimental protocol established a total of thirteen movements, which were grouped into two categories: GA (individual finger movements and hands opening and closure) and GB (grasping movements). The participants executed the tasks in three consecutive days. Two schemes were defined for the data capture: training phase and validation phase. The data concerning the first session (S1) were used to obtain a model of mechanical learning to the patterns classification, and the second (S2) and third (S3) sessions were used for the system validation. Although all tasks were performed in the same experiment, each category was studied and analyzed independently. Effectiveness (Acc), Kappa Coefficient (k) and Specificity (Sp) were calculated to evaluate the performance of each classifier of the executed movement. Positive-Negative Measurement (PNM) indicator was used to measure the performance of the thirteen proposed movements, and Goal Attainment Scale (GAS) was used to assess the extent to which individual objectives of each user were reached during the intervention. During the sessions, there were differences in the performance of the subjects during the proposed movements, which means that some participants could easily maintain repeated patterns, even with few training sessions, while others may need a longer training time to ensure good performance. Regarding the results of effectiveness, specificity, Kappa coefficient and PNM, the fact that the tasks of group A are simpler may explain the better performance of the volunteers in this group of tasks in relation to the performance in the tasks of group B (GB). On the other hand, the values obtained by GAS showed a satisfactory amount of correctness for the objectives outlined. Thus, this study showed that the subjects were able to perform muscular contractions, that is, perform the same movement with distinguishable MES patterns in the three experimental sessions, therefore, the proposed experimental design was validated in all the amputees of this study.Do ponto de vista fisiológico, o conhecimento da estrutura anatômica e funcional da mão é essencial para a compreensão dos mecanismos osteomioarticulares responsáveis pelos movimentos dos dedos e sua relação com as funções de preensão. Quando ocorre lesão em uma dessas estruturas, a mão pode comprometer-se, perdendo todas as funções como nos casos de amputação do membro superior. A utilização de eletromiografia de superfície para controlar próteses de membros superiores é uma opção clínica importante, a qual oferece ao amputado uma autonomia de controle por meio da contração dos músculos residuais. A complexidade biomecânica funcional da mão envolve uma grande área de representação no córtex cerebral. A aprendizagem motora em termos gerais visa a manter as habilidades existentes, a reaquisição de habilidades perdidas e o aprendizado de novas habilidades. O objetivo desta tese de doutorado foi propor e avaliar a aplicação de um novo protocolo experimental de adaptação à prótese mioelétrica com base na distinção de padrões de movimento da mão captados por sEMG do membro remanescente de amputados utilizando sinais mioelétricos (SMEs). Dez sujeitos com amputação de membro superior, de ambos os sexos, com idade média de 38,4 anos ± 14,58. Os critérios de inclusão foram: (1) amputação transradial ou desarticulação de punho, podendo ser unilateral ou bilateral; (2) não apresentar qualquer desordem neurológica ou musculoesquelética; (3) não apresentar restrição de mobilidade articular. Todos foram previamente avaliados, incluindo aspectos de identificação, anamnese e exame físico. Para o registro do SME, foram usados quatro eletrodos ativos bipolares Ag/AgCl (TouchBionic ®). Todos os eletrodos foram posicionados de acordo com as recomendações do SENIAM - Surface ElectromyoGreaphy for the Non-Invasive Assessment of Muscle. Para a digitalização dos SMEs, foi utilizado o sistema de aquisição de dados da National Instrument NI USB-9001, e para a visualização dos SMEs captados e o processamento digital desses sinais, foi desenvolvido um software, com interface de aquisição desenvolvida na plataforma Matlab. O protocolo experimental estabeleceu um total de treze movimentos que foram agrupados em duas categorias: GA (movimento individual dos dedos e abertura e fechamento da mão) e GB (movimentos de preensão). Os participantes desta pesquisa realizaram as tarefas em três dias consecutivos. Dois esquemas foram definidos para captura de dados: fase de treinamento e fase de validação. Os dados pertencentes à primeira sessão (S1) foram utilizados para obter um modelo de aprendizagem mecânica para classificação dos padrões, sendo que a segunda (S2) e terceira (S3) sessões foram utilizadas para validação do sistema. Embora todas as tarefas tenham sido realizadas no mesmo experimento, cada categoria foi estudada e analisada independentemente. Efetividade (Acc), Coeficiente Kappa (k) e Especificidade (Sp) foram calculados para avaliar o desempenho de cada classificador do movimento realizado. O indicador da Medida PositivoNegativo (PNM - do inglês Positive-Negative Measurement) foi utilizado para mensurar a performance dos treze movimentos propostos. Foi utilizado o questionário GAS (Goal Attainment Scale) para avaliação da medida do alcance dos objetivos individualizados de cada usuário durante a intervenção. Durante as sessões houve diferenças no desempenho dos sujeitos na realização dos movimentos propostos, o que significa que alguns participantes facilmente conseguiram manter padrões repetidos, mesmo com poucas sessões de treinamento, enquanto outros talvez precisem de um tempo maior de treinamento para garantir um bom desempenho. Com relação aos resultados de efetividade, especificidade, coeficiente Kappa e PNM, o fato das tarefas do grupo A serem mais simples pode explicar o melhor desempenho dos voluntários nesse grupo de tarefas em relação ao desempenho nas tarefas do grupo B (GB). Os valores obtidos pelo GAS mostraram uma quantidade de acertos satisfatória para os objetivos traçados. Este estudo mostrou que os sujeitos conseguiram realizar contrações musculares, ou seja, realizar o mesmo movimento com padrões de SME distinguíveis para os diferentes movimentos nas três sessões experimentais, portanto, o desenho experimental proposto pôde ser validado em pessoas amputadas.Texthttp://repositorio.ufes.br/handle/10/7140porUniversidade Federal do Espírito SantoDoutorado em BiotecnologiaPrograma de Pós-Graduação em BiotecnologiaUFESBRCentro de Ciências da SaúdeAmputeesMyoelectric controlPattern recognitionHand movementsMyoelectric prosthesisRehabilitationAmputadosControle mioelétricoPadrões de reconhecimentoMovimentos da mãoPróteses mioelétricasReabilitaçãoBiotecnologia61Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_11375_Tese_Regina Mamede Costa.pdfapplication/pdf3185742http://repositorio.ufes.br/bitstreams/93715bc5-2118-4a9c-a4a3-3b3fc65bff32/download7abfa84c72d91cfa37053c7042f79d63MD5110/71402024-08-27 13:05:15.313oai:repositorio.ufes.br:10/7140http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:51:10.907309Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
title Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
spellingShingle Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
Costa, Regina Mamede
Amputees
Myoelectric control
Pattern recognition
Hand movements
Myoelectric prosthesis
Rehabilitation
Amputados
Controle mioelétrico
Padrões de reconhecimento
Movimentos da mão
Próteses mioelétricas
Reabilitação
Biotecnologia
61
title_short Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
title_full Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
title_fullStr Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
title_full_unstemmed Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
title_sort Adaptação do usuário de próteses mioelétricas : implicações na aprendizagem dos movimentos da mão
author Costa, Regina Mamede
author_facet Costa, Regina Mamede
author_role author
dc.contributor.advisor1.fl_str_mv Bastos Filho, Teodiano Freire
dc.contributor.author.fl_str_mv Costa, Regina Mamede
dc.contributor.referee1.fl_str_mv Vargas, Cláudia Domingues
dc.contributor.referee2.fl_str_mv Zamora, Roberto Sagaró
dc.contributor.referee3.fl_str_mv Delis, Alberto López
dc.contributor.referee4.fl_str_mv Nogueira, Breno Valentim
contributor_str_mv Bastos Filho, Teodiano Freire
Vargas, Cláudia Domingues
Zamora, Roberto Sagaró
Delis, Alberto López
Nogueira, Breno Valentim
dc.subject.eng.fl_str_mv Amputees
Myoelectric control
Pattern recognition
Hand movements
Myoelectric prosthesis
Rehabilitation
topic Amputees
Myoelectric control
Pattern recognition
Hand movements
Myoelectric prosthesis
Rehabilitation
Amputados
Controle mioelétrico
Padrões de reconhecimento
Movimentos da mão
Próteses mioelétricas
Reabilitação
Biotecnologia
61
dc.subject.por.fl_str_mv Amputados
Controle mioelétrico
Padrões de reconhecimento
Movimentos da mão
Próteses mioelétricas
Reabilitação
dc.subject.cnpq.fl_str_mv Biotecnologia
dc.subject.udc.none.fl_str_mv 61
description From the physiological point of view, the knowledge of the anatomical and functional structure of the hand is essential for the understanding of the ostheomyoarticular mechanisms responsible for the movements of the fingers and their relation to the grasping functions. When injury occurs in one of these structures, the hand can be impaired, losing all functions as in the cases of amputation of the upper limb. The use of surface electromyography to control upper limb prostheses is an important clinical option, which offers the amputated an autonomy of control through the contraction of residual muscles. The functional biomechanical complexity of the hand involves a large area of representation in the cerebral cortex. In general, motor learning aims to maintain existing skills, the re-acquisition of lost skills and the learning of new skills. The goal of this Ph.D thesis was to propose and evaluate the application of a new experimental protocol for adaptation to the myoelectric prosthesis based on the distinction of hand movement patterns captured by sEMG of the remaining limb of amputees using myoelectric signals (SMEs).Ten upper limb amputees of both sexes, mean age 38.4 years ± 14.58, were evaluated. The inclusion criteria were: (1) transradial amputation or disarticulation of the wrist, unilateral or bilateral; (2) show no neurological or musculoskeletal disorder; (3) present no restriction of joint mobility. All of them were previously assessed including aspects of identification, anamnesis and physical examination. For MES acquisition, four Ag/AgCl active bipolar electrodes were used (TouchBionic ®). All the electrodes were placed according to the SENIAM (Surface Electromyography for the Non-Invasive Assessment of Muscle) recommendation. To the MES digitalization, an National Instrument NI USB-9001 acquisition system was used, and to the visualization of the MES, a digital processing software was developed, with interface to Matlab. The experimental protocol established a total of thirteen movements, which were grouped into two categories: GA (individual finger movements and hands opening and closure) and GB (grasping movements). The participants executed the tasks in three consecutive days. Two schemes were defined for the data capture: training phase and validation phase. The data concerning the first session (S1) were used to obtain a model of mechanical learning to the patterns classification, and the second (S2) and third (S3) sessions were used for the system validation. Although all tasks were performed in the same experiment, each category was studied and analyzed independently. Effectiveness (Acc), Kappa Coefficient (k) and Specificity (Sp) were calculated to evaluate the performance of each classifier of the executed movement. Positive-Negative Measurement (PNM) indicator was used to measure the performance of the thirteen proposed movements, and Goal Attainment Scale (GAS) was used to assess the extent to which individual objectives of each user were reached during the intervention. During the sessions, there were differences in the performance of the subjects during the proposed movements, which means that some participants could easily maintain repeated patterns, even with few training sessions, while others may need a longer training time to ensure good performance. Regarding the results of effectiveness, specificity, Kappa coefficient and PNM, the fact that the tasks of group A are simpler may explain the better performance of the volunteers in this group of tasks in relation to the performance in the tasks of group B (GB). On the other hand, the values obtained by GAS showed a satisfactory amount of correctness for the objectives outlined. Thus, this study showed that the subjects were able to perform muscular contractions, that is, perform the same movement with distinguishable MES patterns in the three experimental sessions, therefore, the proposed experimental design was validated in all the amputees of this study.
publishDate 2017
dc.date.issued.fl_str_mv 2017-03-30
dc.date.accessioned.fl_str_mv 2018-08-01T21:35:20Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-01T21:35:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/7140
url http://repositorio.ufes.br/handle/10/7140
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Biotecnologia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biotecnologia
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Biotecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/93715bc5-2118-4a9c-a4a3-3b3fc65bff32/download
bitstream.checksum.fl_str_mv 7abfa84c72d91cfa37053c7042f79d63
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022499377512448