Designing a network of reference ontologies for the integration of water quality data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/13834 |
Resumo: | Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network. |
id |
UFES_979d275aa1d3dc8ce9d83e1a73dc4be8 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/13834 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Almeida, Joao Paulo Andradehttps://orcid.org/http://lattes.cnpq.br/4332944687727598Campos, Patricia Marcal Carnellihttps://orcid.org/0000-0002-9819-3781http://lattes.cnpq.br/6719413307311916Campos, Maria Luiza Machadohttps://orcid.org/http://lattes.cnpq.br/0659658820912418Barcellos, Monalessa Perinihttps://orcid.org/0000-0002-6225-9478 http://lattes.cnpq.br/88265848772052642024-05-30T00:48:40Z2024-05-30T00:48:40Z2019-10-21Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network.A heterogeneidade semântica representa um grande desafio para a reutilização integrada de dados ambientais. Esse desafio pode ser enfrentado com o uso de ontologias que fornecem uma base semântica comum para a interpretação dos dados, apoiando a negociação de significados. No entanto, existem algumas barreiras para a construção de ontologias com o propósito de integração de dados em domínios complexos como o domínio ambiental. Uma delas é o desenvolvimento de novas ontologias sem considerar o reuso de recursos de conhecimento existentes, como modelos de referência e vocabulários. Para lidar com esse problema, nesse trabalho, propomos uma abordagem sistemática para a identificação e a seleção de recursos de conhecimento reutilizáveis na construção de ontologias com o objetivo de integrar dados de pesquisas científicas. A abordagem (denominada CLeAR) segue alguns princípios da Revisão Sistemática da Literatura, apoiando a busca de recursos de conhecimento na literatura científica. Aplicamos a abordagem ao domínio ambiental, com foco em qualidade de água. Foram pesquisadas 543 publicações. Os resultados obtidos fornecem um conjunto de 75 recursos de conhecimento para o domínio ambiental, avaliados de acordo com a cobertura do domínio e alguns atributos de qualidade. No caso de dados de qualidade de água, existe um amplo espectro de domínios envolvidos (incluindo características geográficas, coordenadas espaciais, parâmetros de qualidade ambiental, atividades de medição, atividades de amostragem, organizações envolvidas, etc.). Nenhum dos recursos de conhecimento identificados abrange por si só todos os aspectos necessários para abordar a integração de dados de qualidade de água. Além disso, eles nem sempre estão explicitamente relacionados, o que os torna inadequados para a integração de dados em sua forma atual. Por isso, nesse trabalho, propomos o projeto de uma rede de ontologias de referência para a integração de dados de qualidade de água, com base em alguns desses recursos de conhecimento. A rede de ontologias proposta está fundamentada na Ontologia Fundamental Unificada (UFO), que fornece noções básicas de objeto, relação, propriedade, evento e outras necessárias para modelar o domínio ambiental, além de permitir a análise e a adaptação dos conceitos representados por diferentes recursos de conhecimento, a fim de possibilitar sua integração na rede de ontologias.Texthttp://repositorio.ufes.br/handle/10/13834porUniversidade Federal do Espírito SantoMestrado em InformáticaPrograma de Pós-Graduação em InformáticaUFESBRCentro Tecnológicosubject.br-rjbnCiência da ComputaçãoIntegração de dadosDados de qualidade de águaReusoBusca sistemáticaRede de ontologiasData integrationWater quality dataReuseSystematic searchOntology networkDesigning a network of reference ontologies for the integration of water quality datatitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_14059_Dissertação final.pdfapplication/pdf6461145http://repositorio.ufes.br/bitstreams/15e3c4e5-7089-42c5-9641-d1a6459b3b22/downloadfd3e1ef5049167b99df7305d09bf4307MD5110/138342024-08-28 17:05:53.754oai:repositorio.ufes.br:10/13834http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:02:28.432094Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Designing a network of reference ontologies for the integration of water quality data |
dc.title.alternative.none.fl_str_mv |
title.alternative |
title |
Designing a network of reference ontologies for the integration of water quality data |
spellingShingle |
Designing a network of reference ontologies for the integration of water quality data Campos, Patricia Marcal Carnelli Ciência da Computação Integração de dados Dados de qualidade de água Reuso Busca sistemática Rede de ontologias Data integration Water quality data Reuse Systematic search Ontology network subject.br-rjbn |
title_short |
Designing a network of reference ontologies for the integration of water quality data |
title_full |
Designing a network of reference ontologies for the integration of water quality data |
title_fullStr |
Designing a network of reference ontologies for the integration of water quality data |
title_full_unstemmed |
Designing a network of reference ontologies for the integration of water quality data |
title_sort |
Designing a network of reference ontologies for the integration of water quality data |
author |
Campos, Patricia Marcal Carnelli |
author_facet |
Campos, Patricia Marcal Carnelli |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000-0002-9819-3781 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/6719413307311916 |
dc.contributor.advisor1.fl_str_mv |
Almeida, Joao Paulo Andrade |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4332944687727598 |
dc.contributor.author.fl_str_mv |
Campos, Patricia Marcal Carnelli |
dc.contributor.referee1.fl_str_mv |
Campos, Maria Luiza Machado |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0659658820912418 |
dc.contributor.referee2.fl_str_mv |
Barcellos, Monalessa Perini |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-6225-9478 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8826584877205264 |
contributor_str_mv |
Almeida, Joao Paulo Andrade Campos, Maria Luiza Machado Barcellos, Monalessa Perini |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
topic |
Ciência da Computação Integração de dados Dados de qualidade de água Reuso Busca sistemática Rede de ontologias Data integration Water quality data Reuse Systematic search Ontology network subject.br-rjbn |
dc.subject.por.fl_str_mv |
Integração de dados Dados de qualidade de água Reuso Busca sistemática Rede de ontologias Data integration Water quality data Reuse Systematic search Ontology network |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-10-21 |
dc.date.accessioned.fl_str_mv |
2024-05-30T00:48:40Z |
dc.date.available.fl_str_mv |
2024-05-30T00:48:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/13834 |
url |
http://repositorio.ufes.br/handle/10/13834 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Informática |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Informática |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/15e3c4e5-7089-42c5-9641-d1a6459b3b22/download |
bitstream.checksum.fl_str_mv |
fd3e1ef5049167b99df7305d09bf4307 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022578112987136 |