Designing a network of reference ontologies for the integration of water quality data

Detalhes bibliográficos
Autor(a) principal: Campos, Patricia Marcal Carnelli
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/13834
Resumo: Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network.
id UFES_979d275aa1d3dc8ce9d83e1a73dc4be8
oai_identifier_str oai:repositorio.ufes.br:10/13834
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Almeida, Joao Paulo Andradehttps://orcid.org/http://lattes.cnpq.br/4332944687727598Campos, Patricia Marcal Carnellihttps://orcid.org/0000-0002-9819-3781http://lattes.cnpq.br/6719413307311916Campos, Maria Luiza Machadohttps://orcid.org/http://lattes.cnpq.br/0659658820912418Barcellos, Monalessa Perinihttps://orcid.org/0000-0002-6225-9478 http://lattes.cnpq.br/88265848772052642024-05-30T00:48:40Z2024-05-30T00:48:40Z2019-10-21Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network.A heterogeneidade semântica representa um grande desafio para a reutilização integrada de dados ambientais. Esse desafio pode ser enfrentado com o uso de ontologias que fornecem uma base semântica comum para a interpretação dos dados, apoiando a negociação de significados. No entanto, existem algumas barreiras para a construção de ontologias com o propósito de integração de dados em domínios complexos como o domínio ambiental. Uma delas é o desenvolvimento de novas ontologias sem considerar o reuso de recursos de conhecimento existentes, como modelos de referência e vocabulários. Para lidar com esse problema, nesse trabalho, propomos uma abordagem sistemática para a identificação e a seleção de recursos de conhecimento reutilizáveis na construção de ontologias com o objetivo de integrar dados de pesquisas científicas. A abordagem (denominada CLeAR) segue alguns princípios da Revisão Sistemática da Literatura, apoiando a busca de recursos de conhecimento na literatura científica. Aplicamos a abordagem ao domínio ambiental, com foco em qualidade de água. Foram pesquisadas 543 publicações. Os resultados obtidos fornecem um conjunto de 75 recursos de conhecimento para o domínio ambiental, avaliados de acordo com a cobertura do domínio e alguns atributos de qualidade. No caso de dados de qualidade de água, existe um amplo espectro de domínios envolvidos (incluindo características geográficas, coordenadas espaciais, parâmetros de qualidade ambiental, atividades de medição, atividades de amostragem, organizações envolvidas, etc.). Nenhum dos recursos de conhecimento identificados abrange por si só todos os aspectos necessários para abordar a integração de dados de qualidade de água. Além disso, eles nem sempre estão explicitamente relacionados, o que os torna inadequados para a integração de dados em sua forma atual. Por isso, nesse trabalho, propomos o projeto de uma rede de ontologias de referência para a integração de dados de qualidade de água, com base em alguns desses recursos de conhecimento. A rede de ontologias proposta está fundamentada na Ontologia Fundamental Unificada (UFO), que fornece noções básicas de objeto, relação, propriedade, evento e outras necessárias para modelar o domínio ambiental, além de permitir a análise e a adaptação dos conceitos representados por diferentes recursos de conhecimento, a fim de possibilitar sua integração na rede de ontologias.Texthttp://repositorio.ufes.br/handle/10/13834porUniversidade Federal do Espírito SantoMestrado em InformáticaPrograma de Pós-Graduação em InformáticaUFESBRCentro Tecnológicosubject.br-rjbnCiência da ComputaçãoIntegração de dadosDados de qualidade de águaReusoBusca sistemáticaRede de ontologiasData integrationWater quality dataReuseSystematic searchOntology networkDesigning a network of reference ontologies for the integration of water quality datatitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_14059_Dissertação final.pdfapplication/pdf6461145http://repositorio.ufes.br/bitstreams/15e3c4e5-7089-42c5-9641-d1a6459b3b22/downloadfd3e1ef5049167b99df7305d09bf4307MD5110/138342024-08-28 17:05:53.754oai:repositorio.ufes.br:10/13834http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:02:28.432094Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Designing a network of reference ontologies for the integration of water quality data
dc.title.alternative.none.fl_str_mv title.alternative
title Designing a network of reference ontologies for the integration of water quality data
spellingShingle Designing a network of reference ontologies for the integration of water quality data
Campos, Patricia Marcal Carnelli
Ciência da Computação
Integração de dados
Dados de qualidade de água
Reuso
Busca sistemática
Rede de ontologias
Data integration
Water quality data
Reuse
Systematic search
Ontology network
subject.br-rjbn
title_short Designing a network of reference ontologies for the integration of water quality data
title_full Designing a network of reference ontologies for the integration of water quality data
title_fullStr Designing a network of reference ontologies for the integration of water quality data
title_full_unstemmed Designing a network of reference ontologies for the integration of water quality data
title_sort Designing a network of reference ontologies for the integration of water quality data
author Campos, Patricia Marcal Carnelli
author_facet Campos, Patricia Marcal Carnelli
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0002-9819-3781
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/6719413307311916
dc.contributor.advisor1.fl_str_mv Almeida, Joao Paulo Andrade
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4332944687727598
dc.contributor.author.fl_str_mv Campos, Patricia Marcal Carnelli
dc.contributor.referee1.fl_str_mv Campos, Maria Luiza Machado
dc.contributor.referee1ID.fl_str_mv https://orcid.org/
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0659658820912418
dc.contributor.referee2.fl_str_mv Barcellos, Monalessa Perini
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-6225-9478
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8826584877205264
contributor_str_mv Almeida, Joao Paulo Andrade
Campos, Maria Luiza Machado
Barcellos, Monalessa Perini
dc.subject.cnpq.fl_str_mv Ciência da Computação
topic Ciência da Computação
Integração de dados
Dados de qualidade de água
Reuso
Busca sistemática
Rede de ontologias
Data integration
Water quality data
Reuse
Systematic search
Ontology network
subject.br-rjbn
dc.subject.por.fl_str_mv Integração de dados
Dados de qualidade de água
Reuso
Busca sistemática
Rede de ontologias
Data integration
Water quality data
Reuse
Systematic search
Ontology network
dc.subject.br-rjbn.none.fl_str_mv subject.br-rjbn
description Data semantic heterogeneity poses a significant challenge to integrated environmental data reuse. This challenge can be addressed with the use of ontologies that can provide a common semantic background for data interpretation, supporting meaning negotiation. However, there are some barriers to build ontologies for data integration in complex domains such as the environmental one. A relevant problem is the development of new ontologies disregarding previous knowledge resources such as reference models and vocabularies. To deal with this problem, in this work, we propose a systematic approach for the identification and selection of reusable knowledge resources for building ontologies with the purpose of scientific research data integration. The approach (dubbed CLeAR) follows some principles of the Systematic Literature Review, supporting the search for knowledge resources in the scientific literature. We apply the approach to the environmental domain, focusing on water quality. A total of 543 publications were surveyed. The results obtained provide a set of 75 knowledge resources for the environmental domain, evaluated according domain coverage and some quality attributes. In the case of water quality data, there is an ample spectrum of subject domains covered (including geographical features, spatial coordinates, environmental quality parameters, measurement activities, sampling activities, involved organizations, etc.). None of the knowledge resources on their own covers all aspects required to address the integration of water quality data. In addition, they are not always explicitly related, which makes them unsuitable for data integration in their current form. Because of this, in this work, we propose the design of a network of reference ontologies for the integration of water quality data, based on some of the identified knowledge resources. The proposed ontology network is grounded in the Unified Foundational Ontology (UFO), which provides basic notions of object, relation, property, event, and others necessary to model the environmental domain, besides allowing the analysis and adaptation of the concepts represented by different knowledge resources, in order to enable their integration into the ontology network.
publishDate 2019
dc.date.issued.fl_str_mv 2019-10-21
dc.date.accessioned.fl_str_mv 2024-05-30T00:48:40Z
dc.date.available.fl_str_mv 2024-05-30T00:48:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/13834
url http://repositorio.ufes.br/handle/10/13834
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/15e3c4e5-7089-42c5-9641-d1a6459b3b22/download
bitstream.checksum.fl_str_mv fd3e1ef5049167b99df7305d09bf4307
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022578112987136