O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/17131 |
Resumo: | Myocardial Infarction (AMI) is considered the main cause of heart failure (HF). It is believed that oxidative stress (ROS) plays a crucial role in the myocardium adjacent to the infarcted area and in the progression of left ventricular remodeling. At 7 days post-AMI, the decrease in myocardial contractility is associated with changes in the pathway of calcium (Ca2+) and ROS. However, the impact of mitochondrial ROS as a source of controlled dysfunction during the early phase of AMI will remains unknown. We hypothesize that MitoQ mitochondrial antioxidant treatment for 7 days after AMI will improve contractile function dependent on the reduction in mitochondrial ROS production in the acute phase of AIM. Therefore, our objective was to analyze the effect of treatment, for 7 days, with the specific mitochondrial antioxidant, MitoQ, on contractile dysfunction in the acute phase after AMI in rats. Wistar rats aged 12 weeks were divided into Sham, Infarto, Sham MitoQ and Infarto MitoQ (CEUA 16/2021). At the end of treatment with MitoQ for 7 days in drinking water (100 µM), analyzes of myocardial contractility “in vivo” were performed in hemodynamic parameters and “in vitro” measured in isolated papillary left ventricle (LV) with muscle length in which the active voltage is maximum (Lmáx); in presence of different extracellular concentrations of MitoQ; Ca2+ and isoproterenol. Cardiomyocytes isolated from the LV were used to measure morphological and temporal parameters of contractile function and transient Ca2+. Superoxide anion (O2 •- ) production was quantified using Dihydroethidium (DHE) and mitochondrial O2 •- using MitoSox Red. Statistical analysis used ANOVA two-way and post-hoc de Tukey’s and test t student, for p<0,05. Treatment with MitoQ did not change the area of infarction, However, it prevented the decrease in body weight gain and prevented the hemodynamic changes observed in the infarction group in the following parameters: systolic blood pressure (SBP) Sham: 113 ± 3; Infarto: 93 ± 4; Sham MitoQ: 108 ± 4; Infarto MitoQ: 108 ± 3*, mmHg *p<0.05); diastolic blood pressure (DBP) (Sham: 84 ± 3; Infarto: 68 ± 3; Sham MitoQ: 81 ± 3; Infarto MitoQ: 108 ± 3*, mmHg*p<0.05); left ventricular systole pressure (LVSP) (Sham: 116 ± 4.5; Infarto: 79 ± 2.7; Sham MitoQ: 115.8 ± 6; Infarto MitoQ: 100 ± 4.4*, mmHg *p<0.05); left ventricular end-diastolic pressure (LVDP) (Sham: 5 ± 0.4; Infarto: 10 ± 1; Sham MitoQ: 3 ± 1; Infarto MitoQ: 5 ± 0.5*, mmHg *p<0.05); first derivate of maximum pressure (dP/dtmáx) (Sham: 3993 ± 199; Infarto: 2480 ± 58; Sham MitoQ: 3326 ± 265; Infarto MitoQ: 2738 ± 103*, mmHg/s *p<0.05) and first derivate of minimum (dP/dtmin) (Sham: -3273 ± 227; Infarto: -1486 ± 41; Sham MitoQ: -2703 ± 88; Infarto MitoQ: -2083 ± 88*, mmHg/s *p<0,05). Treatment with MitoQ (100 uM) for 7 days was able to prevent the reduction of the isometric force of contraction of the animals in the infarction group (Sham: 0.56 ± 0.06; Infarto: 0.29 ± 0.05; Sham MitoQ: 0.47 ± 0.07; Infarto MitoQ: 0.73 ± 0.08* g/mg, *p<0.05), the reduction of the maximum positive derivative of force (+dF/dtmáx) (Sham: 25 ± 2.18; Infarto: 14.43 ± 2.20; Sham MitoQ: 16.88 ± 2.16; Infarto MitoQ: 24.17 ± 1.75 g/g/s, *p<0.05) and reduced contractility to extracellular Ca2+ influx (1,25 mM – Sham: 444 ± 49.86; Infarto: 229.83 ± 68.28; Sham MitoQ: 357.38 ± 29.97; Infarto MitoQ: 640.17 ± 60.9* g/g, *p<0.05). Morphometric analyses observed that treatment with MitoQ prevented the increase in cell area (Sham: 3846 ± 105; Infarto: 4309 ± 107; Sham MitoQ: 4107 ± 134; Infarto MitoQ: 3782 ± 116* µm2 , *p<0.05) and increased cell length (Sham: 141 ± 2.8; Infarto: 153 ± 1.95; Sham MitoQ: 144 ± 2.25; Infarto MitoQ: 137 ± 2.25* µm, *p<0,05) of cardiomyocytes in the initial stage of AMI. The cardiomyocytes contractility was increased in the Infarto group, which were prevented by MitoQ treatment such as cardiomyocyte shortening (Sham: 610 ± 26; Infarto: 815 ± 30; Sham MitoQ: 653,5 ± 25; Infarto MitoQ: 553,6 ± 30* µm2 , *p<0.05). MitoQ treatment prevented the increase in [Ca2+]i transient amplitude (Sham: 2.58 ± 0.04; Infarto: 3.15 ± 0.07; Sham MitoQ: 2.65 ± 0.08; Infarto MitoQ: 2.30 ± 0.05* F/F0, *p<0.05). The in-situ production of O2 •- , demonstrated by fluorescence intensity, was higher in the Infarto group, but treatment with MitoQ for 7 days prevented this increase in ROS. Mitochondrial O2 •- formation in isolated cardiomyocytes was greater in the Infarto group compared to the Sham group (p<0.01), and MitoQ treatment restored redox homeostasis. Our results demonstrated that MitoQ treatment prevented contractile dysfunction, confirming the involvement of mitochondrial ROS participation in the development of HF after AMI. In this way, find the most effective and safe way to modulate mitochondrial function and dynamics in HF after AMI in its initial phase represents a potential therapeutic target and an important step for the future of research in the treatment of cardiovascular diseases. |
id |
UFES_c2d2b6b678a0c43c168f5adfb4eee653 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/17131 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Stefanon, Ivanitahttps://orcid.org/0000-0003-2638-5183http://lattes.cnpq.br/8456612999765726Ximenes, Carolina Falcãohttps://orcid.org/0000-0001-6619-2285http://lattes.cnpq.br/3613329548109549Bissoli, Nazaré Souzahttps://orcid.org/0000-0002-3456-2437http://lattes.cnpq.br/8865368585732583Baldo, Thaís de Oliveira Fariahttps://orcid.org/0000-0001-8391-6177http://lattes.cnpq.br/2809630268648026Fonseca, Silvia Carolina Guatimosimhttps://orcid.org/0000-0001-8386-3722http://lattes.cnpq.br/79587860294636332024-05-30T01:42:29Z2024-05-30T01:42:29Z2023-08-08Myocardial Infarction (AMI) is considered the main cause of heart failure (HF). It is believed that oxidative stress (ROS) plays a crucial role in the myocardium adjacent to the infarcted area and in the progression of left ventricular remodeling. At 7 days post-AMI, the decrease in myocardial contractility is associated with changes in the pathway of calcium (Ca2+) and ROS. However, the impact of mitochondrial ROS as a source of controlled dysfunction during the early phase of AMI will remains unknown. We hypothesize that MitoQ mitochondrial antioxidant treatment for 7 days after AMI will improve contractile function dependent on the reduction in mitochondrial ROS production in the acute phase of AIM. Therefore, our objective was to analyze the effect of treatment, for 7 days, with the specific mitochondrial antioxidant, MitoQ, on contractile dysfunction in the acute phase after AMI in rats. Wistar rats aged 12 weeks were divided into Sham, Infarto, Sham MitoQ and Infarto MitoQ (CEUA 16/2021). At the end of treatment with MitoQ for 7 days in drinking water (100 µM), analyzes of myocardial contractility “in vivo” were performed in hemodynamic parameters and “in vitro” measured in isolated papillary left ventricle (LV) with muscle length in which the active voltage is maximum (Lmáx); in presence of different extracellular concentrations of MitoQ; Ca2+ and isoproterenol. Cardiomyocytes isolated from the LV were used to measure morphological and temporal parameters of contractile function and transient Ca2+. Superoxide anion (O2 •- ) production was quantified using Dihydroethidium (DHE) and mitochondrial O2 •- using MitoSox Red. Statistical analysis used ANOVA two-way and post-hoc de Tukey’s and test t student, for p<0,05. Treatment with MitoQ did not change the area of infarction, However, it prevented the decrease in body weight gain and prevented the hemodynamic changes observed in the infarction group in the following parameters: systolic blood pressure (SBP) Sham: 113 ± 3; Infarto: 93 ± 4; Sham MitoQ: 108 ± 4; Infarto MitoQ: 108 ± 3*, mmHg *p<0.05); diastolic blood pressure (DBP) (Sham: 84 ± 3; Infarto: 68 ± 3; Sham MitoQ: 81 ± 3; Infarto MitoQ: 108 ± 3*, mmHg*p<0.05); left ventricular systole pressure (LVSP) (Sham: 116 ± 4.5; Infarto: 79 ± 2.7; Sham MitoQ: 115.8 ± 6; Infarto MitoQ: 100 ± 4.4*, mmHg *p<0.05); left ventricular end-diastolic pressure (LVDP) (Sham: 5 ± 0.4; Infarto: 10 ± 1; Sham MitoQ: 3 ± 1; Infarto MitoQ: 5 ± 0.5*, mmHg *p<0.05); first derivate of maximum pressure (dP/dtmáx) (Sham: 3993 ± 199; Infarto: 2480 ± 58; Sham MitoQ: 3326 ± 265; Infarto MitoQ: 2738 ± 103*, mmHg/s *p<0.05) and first derivate of minimum (dP/dtmin) (Sham: -3273 ± 227; Infarto: -1486 ± 41; Sham MitoQ: -2703 ± 88; Infarto MitoQ: -2083 ± 88*, mmHg/s *p<0,05). Treatment with MitoQ (100 uM) for 7 days was able to prevent the reduction of the isometric force of contraction of the animals in the infarction group (Sham: 0.56 ± 0.06; Infarto: 0.29 ± 0.05; Sham MitoQ: 0.47 ± 0.07; Infarto MitoQ: 0.73 ± 0.08* g/mg, *p<0.05), the reduction of the maximum positive derivative of force (+dF/dtmáx) (Sham: 25 ± 2.18; Infarto: 14.43 ± 2.20; Sham MitoQ: 16.88 ± 2.16; Infarto MitoQ: 24.17 ± 1.75 g/g/s, *p<0.05) and reduced contractility to extracellular Ca2+ influx (1,25 mM – Sham: 444 ± 49.86; Infarto: 229.83 ± 68.28; Sham MitoQ: 357.38 ± 29.97; Infarto MitoQ: 640.17 ± 60.9* g/g, *p<0.05). Morphometric analyses observed that treatment with MitoQ prevented the increase in cell area (Sham: 3846 ± 105; Infarto: 4309 ± 107; Sham MitoQ: 4107 ± 134; Infarto MitoQ: 3782 ± 116* µm2 , *p<0.05) and increased cell length (Sham: 141 ± 2.8; Infarto: 153 ± 1.95; Sham MitoQ: 144 ± 2.25; Infarto MitoQ: 137 ± 2.25* µm, *p<0,05) of cardiomyocytes in the initial stage of AMI. The cardiomyocytes contractility was increased in the Infarto group, which were prevented by MitoQ treatment such as cardiomyocyte shortening (Sham: 610 ± 26; Infarto: 815 ± 30; Sham MitoQ: 653,5 ± 25; Infarto MitoQ: 553,6 ± 30* µm2 , *p<0.05). MitoQ treatment prevented the increase in [Ca2+]i transient amplitude (Sham: 2.58 ± 0.04; Infarto: 3.15 ± 0.07; Sham MitoQ: 2.65 ± 0.08; Infarto MitoQ: 2.30 ± 0.05* F/F0, *p<0.05). The in-situ production of O2 •- , demonstrated by fluorescence intensity, was higher in the Infarto group, but treatment with MitoQ for 7 days prevented this increase in ROS. Mitochondrial O2 •- formation in isolated cardiomyocytes was greater in the Infarto group compared to the Sham group (p<0.01), and MitoQ treatment restored redox homeostasis. Our results demonstrated that MitoQ treatment prevented contractile dysfunction, confirming the involvement of mitochondrial ROS participation in the development of HF after AMI. In this way, find the most effective and safe way to modulate mitochondrial function and dynamics in HF after AMI in its initial phase represents a potential therapeutic target and an important step for the future of research in the treatment of cardiovascular diseases.O infarto agudo do miocárdio (IAM) é considerado a principal causa de insuficiência cardíaca (IC). Acredita-se que o estresse oxidativo desempenhe um papel crucial no miocárdio adjacente à área infartada e na progressão do remodelamento ventricular esquerdo. Aos 7 dias pós-IAM, a diminuição da contratilidade miocárdica está associada a alterações no manuseio de cálcio (Ca2+) e das espécies reativas de oxigênio (ERO). No entanto, o impacto da ERO mitocondrial como fonte na disfunção contrátil durante a fase inicial do IAM ainda não está totalmente elucidada. Nossa hipótese é que o tratamento com antioxidante mitocondrial MitoQ por 7 dias após o IAM melhorará a função contrátil dependente da redução na produção de ERO mitocondrial na fase aguda do IAM. Portanto, nosso objetivo foi analisar o efeito do tratamento, durante 7 dias, com o antioxidante específico mitocondrial, MitoQ, sobre a disfunção contrátil na fase aguda após IAM em ratos. Ratos Wistar com 12 semanas de idade foram divididos em Sham, Infarto, Sham MitoQ e Infarto MitoQ (CEUA-UFES 16/2021). Ao final do tratamento com MitoQ por 7 dias em água potável (100 µM), foram realizadas as análises da contratilidade miocárdica “in vivo” nos parâmetros hemodinâmicos e “in vitro” medida em músculos papilares isolados adjacentes a cicatriz do infarto da parede livre do ventrículo esquerdo (VE) com comprimento de músculo no qual a tensão ativa é máxima (Lmáx); na presença de diferentes concentrações extracelular de MitoQ; Ca2+ e isoproterenol. Cardiomiócitos isolados do VE remanescente ao infarto foram usados para as medidas de parâmetros morfológicos, temporais da função contrátil e o transiente de Ca2+ . A produção de ânion superóxido (O2 •- ) foi quantificada usando Didrohetídio (DHE) e O2 • mitocondrial usando MitoSox Red. A análise estatística usada foi ANOVA duas vias e post-hoc de Tukey’s e test t student, para p<0,05. O tratamento com MitoQ não modificou a área de infarto. No entanto, evitou a diminuição no ganho de peso corporal e preveniu as alterações hemodinâmicas observadas no grupo infarto nos seguintes parâmetros: pressão arterial sistólica (PAS) (Sham: 113 ± 3; Infarto: 93 ± 4; Sham MitoQ: 108 ± 4; Infarto MitoQ: 108 ± 3*, mmHg *p<0,05); pressão arterial diastólica (PAD) (Sham: 84 ± 3; Infarto: 68 ± 3, Sham MitoQ: 81 ± 3; Infarto MitoQ: 108 ± 3*, mmHg *p<0,05); pressão sistólica do ventrículo esquerdo (PSVE) (Sham: 116 ± 4,5; Infarto: 79 ± 2,7; Sham MitoQ: 115,8 ± 6; Infarto MitoQ: 100 ± 4,4*, mmHg *p<0,05); pressão diastólica final do ventrículo esquerdo (PDfVE) (Sham: 5 ± 0,4; Infarto: 10 ± 1; Sham MitoQ: 3 ± 1; Infarto MitoQ: 5 ± 0,5*, mmHg* p<0,05); primeira derivada de pressão máxima (dP/dt máx) (Sham: 3993 ± 199; Infarto: 2480 ± 58; Sham MitoQ: 3326 ± 265; Infarto MitoQ: 2738 ± 103*, mmHg/s *p<0,05) e primeira derivada de pressão mínima (dP/dtmin) (Sham: -3273 ± 227; Infarto: -1486 ± 41; Sham MitoQ: -2703 ± 88; Infarto MitoQ: -2083 ± 88*, mmHg/s *p<0,05). O tratamento com MitoQ (100 uM) por 7 dias, foi capaz de prevenir a redução da força isométrica basal de contração dos animais do grupo Infarto (Sham: 0,56 ± 0,06; Infarto: 0,29 ± 0,05; Sham MitoQ: 0,47 ± 0,07; Infarto MitoQ: 0,73 ± 0,08* g/mg *p<0,05), a redução da derivada positiva máxima da força (+dF/dtmáx) (Sham: 25 ± 2,18; Infarto: 14,43 ± 2,20; Sham MitoQ: 16,88 ± 2,16; Infarto MitoQ: 24,17 ± 1,75 g/g/s *p<0,05) e a redução da contratilidade ao influxo de Ca2+ extracelular (1,25 mM – Sham: 444 ± 49,86; Infarto: 229,83 ± 68,28; Sham MitoQ: 357,38 ± 29,97; Infarto MitoQ: 640,17 ± 60,9*, g/g *p<0,05). As análises morfométricas mostraram que o tratamento com MitoQ impediu o aumento da área celular (Sham: 3846 ± 105; Infarto: 4309 ± 107; Sham MitoQ: 4107 ± 134; Infarto MitoQ: 3782 ± 116*, µ 2 *p<0,05) e aumento do comprimento celular (Sham: 141 ± 2.8; Infarto: 153 ± 1,95, Sham MitoQ: 144 ± 2,25; Infarto MitoQ: 137 ± 2,25* µm, *p<0,05) de cardiomiócitos no estágio inicial do IAM. As análises de contratilidade dos cardiomiócitos mostraram um aumento dos parâmetros no grupo Infarto, que foram evitados pelo tratamento com MitoQ, como no encurtamento dos cardiomiócitos (Sham: 610 ± 26; Infarto: 815 ± 30; Sham MitoQ: 653,5 ± 25; Infarto MitoQ: 553,6 ± 30*, µm2 *p<0,05). O tratamento com MitoQ impediu o aumento da amplitude do transiente de [Ca2+]i (Sham: 2,58 ± 0,04; Infarto: 3,15 ± 0,07; Sham MitoQ: 2,65 ± 0,08; Infarto MitoQ: 2,30 ± 0,05*, F/F0 *p<0,05). Adicionalmente as alterações de contratilidade miocárdica, a produção in situ de O2 •- , demonstrada pela intensidade de fluorescência, foi maior no grupo Infarto, mas o tratamento com MitoQ por 7 dias impediu esse aumento da ERO. A formação de O2 •- mitocondrial em cardiomiócitos isolados foi maior no grupo Infarto em comparação com o grupo Sham (p<0,01), e o tratamento com MitoQ restaurou a homeostase redox. Nossos resultados demonstraram que o tratamento com MitoQ preveniu a disfunção contrátil no músculo papilar adjacente a área de cicatriz do infarto, confirmando um envolvimento da participação do ERO mitocondrial no desenvolvimento da IC após o IAM. Desta forma, encontrar a maneira mais efetiva e segura de modular a função e a dinâmica mitocondrial na IC após IAM na sua fase inicial, representa um potencial alvo terapêutico e um importante passo para o futuro das pesquisas no tratamento das doenças cardiovasculares.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Texthttp://repositorio.ufes.br/handle/10/17131porUniversidade Federal do Espírito SantoDoutorado em Ciências FisiológicasPrograma de Pós-Graduação em Ciências FisiológicasUFESBRCentro de Ciências da Saúdesubject.br-rjbnFisiologiaContratilidade miocárdicaMesilato de mitoquinonaEstresse oxidativoInfarto agudo do miocárdioMúsculo papilar isoladoCardiomiócito osoladoO antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em ratotitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALCarolinaFalcaoXimenes-2023-Trabalho.pdfapplication/pdf4806358http://repositorio.ufes.br/bitstreams/51b154a2-3700-4603-8156-f0b4324084c4/downloade177abfe2e9283bfe7169f47f9795931MD5110/171312024-07-29 09:37:19.285oai:repositorio.ufes.br:10/17131http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:59:12.426140Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
dc.title.alternative.none.fl_str_mv |
title.alternative |
title |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
spellingShingle |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato Ximenes, Carolina Falcão Fisiologia Contratilidade miocárdica Mesilato de mitoquinona Estresse oxidativo Infarto agudo do miocárdio Músculo papilar isolado Cardiomiócito osolado subject.br-rjbn |
title_short |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
title_full |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
title_fullStr |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
title_full_unstemmed |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
title_sort |
O antioxidante mitocondrial, mitoquinona, previne a disfunção cardíaca 7 dias após infarto do miocárdio em rato |
author |
Ximenes, Carolina Falcão |
author_facet |
Ximenes, Carolina Falcão |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000-0001-6619-2285 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/3613329548109549 |
dc.contributor.advisor1.fl_str_mv |
Stefanon, Ivanita |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0003-2638-5183 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8456612999765726 |
dc.contributor.author.fl_str_mv |
Ximenes, Carolina Falcão |
dc.contributor.referee1.fl_str_mv |
Bissoli, Nazaré Souza |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0002-3456-2437 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8865368585732583 |
dc.contributor.referee2.fl_str_mv |
Baldo, Thaís de Oliveira Faria |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0001-8391-6177 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2809630268648026 |
dc.contributor.referee3.fl_str_mv |
Fonseca, Silvia Carolina Guatimosim |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0001-8386-3722 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7958786029463633 |
contributor_str_mv |
Stefanon, Ivanita Bissoli, Nazaré Souza Baldo, Thaís de Oliveira Faria Fonseca, Silvia Carolina Guatimosim |
dc.subject.cnpq.fl_str_mv |
Fisiologia |
topic |
Fisiologia Contratilidade miocárdica Mesilato de mitoquinona Estresse oxidativo Infarto agudo do miocárdio Músculo papilar isolado Cardiomiócito osolado subject.br-rjbn |
dc.subject.por.fl_str_mv |
Contratilidade miocárdica Mesilato de mitoquinona Estresse oxidativo Infarto agudo do miocárdio Músculo papilar isolado Cardiomiócito osolado |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
Myocardial Infarction (AMI) is considered the main cause of heart failure (HF). It is believed that oxidative stress (ROS) plays a crucial role in the myocardium adjacent to the infarcted area and in the progression of left ventricular remodeling. At 7 days post-AMI, the decrease in myocardial contractility is associated with changes in the pathway of calcium (Ca2+) and ROS. However, the impact of mitochondrial ROS as a source of controlled dysfunction during the early phase of AMI will remains unknown. We hypothesize that MitoQ mitochondrial antioxidant treatment for 7 days after AMI will improve contractile function dependent on the reduction in mitochondrial ROS production in the acute phase of AIM. Therefore, our objective was to analyze the effect of treatment, for 7 days, with the specific mitochondrial antioxidant, MitoQ, on contractile dysfunction in the acute phase after AMI in rats. Wistar rats aged 12 weeks were divided into Sham, Infarto, Sham MitoQ and Infarto MitoQ (CEUA 16/2021). At the end of treatment with MitoQ for 7 days in drinking water (100 µM), analyzes of myocardial contractility “in vivo” were performed in hemodynamic parameters and “in vitro” measured in isolated papillary left ventricle (LV) with muscle length in which the active voltage is maximum (Lmáx); in presence of different extracellular concentrations of MitoQ; Ca2+ and isoproterenol. Cardiomyocytes isolated from the LV were used to measure morphological and temporal parameters of contractile function and transient Ca2+. Superoxide anion (O2 •- ) production was quantified using Dihydroethidium (DHE) and mitochondrial O2 •- using MitoSox Red. Statistical analysis used ANOVA two-way and post-hoc de Tukey’s and test t student, for p<0,05. Treatment with MitoQ did not change the area of infarction, However, it prevented the decrease in body weight gain and prevented the hemodynamic changes observed in the infarction group in the following parameters: systolic blood pressure (SBP) Sham: 113 ± 3; Infarto: 93 ± 4; Sham MitoQ: 108 ± 4; Infarto MitoQ: 108 ± 3*, mmHg *p<0.05); diastolic blood pressure (DBP) (Sham: 84 ± 3; Infarto: 68 ± 3; Sham MitoQ: 81 ± 3; Infarto MitoQ: 108 ± 3*, mmHg*p<0.05); left ventricular systole pressure (LVSP) (Sham: 116 ± 4.5; Infarto: 79 ± 2.7; Sham MitoQ: 115.8 ± 6; Infarto MitoQ: 100 ± 4.4*, mmHg *p<0.05); left ventricular end-diastolic pressure (LVDP) (Sham: 5 ± 0.4; Infarto: 10 ± 1; Sham MitoQ: 3 ± 1; Infarto MitoQ: 5 ± 0.5*, mmHg *p<0.05); first derivate of maximum pressure (dP/dtmáx) (Sham: 3993 ± 199; Infarto: 2480 ± 58; Sham MitoQ: 3326 ± 265; Infarto MitoQ: 2738 ± 103*, mmHg/s *p<0.05) and first derivate of minimum (dP/dtmin) (Sham: -3273 ± 227; Infarto: -1486 ± 41; Sham MitoQ: -2703 ± 88; Infarto MitoQ: -2083 ± 88*, mmHg/s *p<0,05). Treatment with MitoQ (100 uM) for 7 days was able to prevent the reduction of the isometric force of contraction of the animals in the infarction group (Sham: 0.56 ± 0.06; Infarto: 0.29 ± 0.05; Sham MitoQ: 0.47 ± 0.07; Infarto MitoQ: 0.73 ± 0.08* g/mg, *p<0.05), the reduction of the maximum positive derivative of force (+dF/dtmáx) (Sham: 25 ± 2.18; Infarto: 14.43 ± 2.20; Sham MitoQ: 16.88 ± 2.16; Infarto MitoQ: 24.17 ± 1.75 g/g/s, *p<0.05) and reduced contractility to extracellular Ca2+ influx (1,25 mM – Sham: 444 ± 49.86; Infarto: 229.83 ± 68.28; Sham MitoQ: 357.38 ± 29.97; Infarto MitoQ: 640.17 ± 60.9* g/g, *p<0.05). Morphometric analyses observed that treatment with MitoQ prevented the increase in cell area (Sham: 3846 ± 105; Infarto: 4309 ± 107; Sham MitoQ: 4107 ± 134; Infarto MitoQ: 3782 ± 116* µm2 , *p<0.05) and increased cell length (Sham: 141 ± 2.8; Infarto: 153 ± 1.95; Sham MitoQ: 144 ± 2.25; Infarto MitoQ: 137 ± 2.25* µm, *p<0,05) of cardiomyocytes in the initial stage of AMI. The cardiomyocytes contractility was increased in the Infarto group, which were prevented by MitoQ treatment such as cardiomyocyte shortening (Sham: 610 ± 26; Infarto: 815 ± 30; Sham MitoQ: 653,5 ± 25; Infarto MitoQ: 553,6 ± 30* µm2 , *p<0.05). MitoQ treatment prevented the increase in [Ca2+]i transient amplitude (Sham: 2.58 ± 0.04; Infarto: 3.15 ± 0.07; Sham MitoQ: 2.65 ± 0.08; Infarto MitoQ: 2.30 ± 0.05* F/F0, *p<0.05). The in-situ production of O2 •- , demonstrated by fluorescence intensity, was higher in the Infarto group, but treatment with MitoQ for 7 days prevented this increase in ROS. Mitochondrial O2 •- formation in isolated cardiomyocytes was greater in the Infarto group compared to the Sham group (p<0.01), and MitoQ treatment restored redox homeostasis. Our results demonstrated that MitoQ treatment prevented contractile dysfunction, confirming the involvement of mitochondrial ROS participation in the development of HF after AMI. In this way, find the most effective and safe way to modulate mitochondrial function and dynamics in HF after AMI in its initial phase represents a potential therapeutic target and an important step for the future of research in the treatment of cardiovascular diseases. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-08-08 |
dc.date.accessioned.fl_str_mv |
2024-05-30T01:42:29Z |
dc.date.available.fl_str_mv |
2024-05-30T01:42:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/17131 |
url |
http://repositorio.ufes.br/handle/10/17131 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciências Fisiológicas |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Fisiológicas |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências da Saúde |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciências Fisiológicas |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/51b154a2-3700-4603-8156-f0b4324084c4/download |
bitstream.checksum.fl_str_mv |
e177abfe2e9283bfe7169f47f9795931 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022554928971776 |