Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais

Detalhes bibliográficos
Autor(a) principal: Moura, Leonardo Caputo de
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/6252
Resumo: In this work a study about the boundary element method applied to axyssimetric elastostatic problems is developed. Some approaches used to evaluate the integrals involved in the method are reviewed. Triangular isoparametric boundary elements are used, with linear or quadratic shape functions. The Kelvin solution, which uses a unitary concentrated load in an infinite elastic domain to generate the fundamental solution, is taken into account. In addition to the classical BEM algorithm, in order to avoid any singularities, an algorithm using the collocation points outside the problem domain is presented. The three-dimensional problem expressed in cartesian coordinates is transformed into cylindrical coordinates. Next, the mathematical expressions are integrated in the θ variable, transforming the problem in a two-dimensional solution. In this mathematical strategy the elliptic integrals and their derivatives are manipulated to obtain the fundamental stresses. Here the positions of source points are external to the physical domain, avoiding singularities. A program has been developed using these approaches, its efficiency was evaluated by means of some numerical examples
id UFES_daf18b47040f3665636b066be4a3f590
oai_identifier_str oai:repositorio.ufes.br:10/6252
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiaisAplication of boundary element method for resolution of special elastic axyssimetric problemsProblemas elásticos axissimétricosMétodos de elementos de contornoEngenharia Mecânica621In this work a study about the boundary element method applied to axyssimetric elastostatic problems is developed. Some approaches used to evaluate the integrals involved in the method are reviewed. Triangular isoparametric boundary elements are used, with linear or quadratic shape functions. The Kelvin solution, which uses a unitary concentrated load in an infinite elastic domain to generate the fundamental solution, is taken into account. In addition to the classical BEM algorithm, in order to avoid any singularities, an algorithm using the collocation points outside the problem domain is presented. The three-dimensional problem expressed in cartesian coordinates is transformed into cylindrical coordinates. Next, the mathematical expressions are integrated in the θ variable, transforming the problem in a two-dimensional solution. In this mathematical strategy the elliptic integrals and their derivatives are manipulated to obtain the fundamental stresses. Here the positions of source points are external to the physical domain, avoiding singularities. A program has been developed using these approaches, its efficiency was evaluated by means of some numerical examplesNeste trabalho desenvolve-se um estudo sobre o método dos elementos de contorno (MEC) aplicado a problemas elásticos axissimétricos, onde são revistas algumas formas de tratamento das integrais envolvidas considerados elementos de contorno quadráticos nos algoritmos do método. São adotados elementos isoparamétricos com funções de interpolação lineares ou quadráticas. Foi tomada como solução fundamental cartesiana tridimensional a solução de Kelvin, na qual se considera uma carga unitária concentrada em um domínio infinito com propriedades e comportamento elásticos. Na formulação clássica do MEC desenvolve-se um algoritmo em que os pontos de colocação são posicionados fora do domínio do problema, evitando-se assim qualquer tipo de singularidade. O problema, que é tridimensional e expresso em coordenadas cilíndricas (r, θ e z) originalmente, é integrado em relação a θ transformando-se em um problema bidimensional expresso somente em função de coordenadas ortogonais (r e z).Durante este procedimento há o aparecimento de integrais elípticas e suas derivadas, as quais são manipuladas para a obtenção das expressões de deformações e tensões fundamentais. Deslocamentos e tensões em pontos internos são determinados numa etapa seguinte. Um programa foi implementado utilizando as técnicas e formulações revistas, que tiveram sua eficiência avaliada por meio de alguns exemplos numéricosUniversidade Federal do Espírito SantoBRMestrado em Engenharia MecânicaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia MecânicaLoeffler Neto, Carlos FriedrichMenandro, Fernando César MeiraBulcão, AndréMoura, Leonardo Caputo de2016-12-23T14:08:14Z2012-01-102016-12-23T14:08:14Z2011-07-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfMOURA, Leonardo Caputo de. Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais. 2011. 168 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011.http://repositorio.ufes.br/handle/10/6252porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-07-17T16:55:54Zoai:repositorio.ufes.br:10/6252Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-07-17T16:55:54Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
Aplication of boundary element method for resolution of special elastic axyssimetric problems
title Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
spellingShingle Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
Moura, Leonardo Caputo de
Problemas elásticos axissimétricos
Métodos de elementos de contorno
Engenharia Mecânica
621
title_short Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
title_full Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
title_fullStr Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
title_full_unstemmed Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
title_sort Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais
author Moura, Leonardo Caputo de
author_facet Moura, Leonardo Caputo de
author_role author
dc.contributor.none.fl_str_mv Loeffler Neto, Carlos Friedrich
Menandro, Fernando César Meira
Bulcão, André
dc.contributor.author.fl_str_mv Moura, Leonardo Caputo de
dc.subject.por.fl_str_mv Problemas elásticos axissimétricos
Métodos de elementos de contorno
Engenharia Mecânica
621
topic Problemas elásticos axissimétricos
Métodos de elementos de contorno
Engenharia Mecânica
621
description In this work a study about the boundary element method applied to axyssimetric elastostatic problems is developed. Some approaches used to evaluate the integrals involved in the method are reviewed. Triangular isoparametric boundary elements are used, with linear or quadratic shape functions. The Kelvin solution, which uses a unitary concentrated load in an infinite elastic domain to generate the fundamental solution, is taken into account. In addition to the classical BEM algorithm, in order to avoid any singularities, an algorithm using the collocation points outside the problem domain is presented. The three-dimensional problem expressed in cartesian coordinates is transformed into cylindrical coordinates. Next, the mathematical expressions are integrated in the θ variable, transforming the problem in a two-dimensional solution. In this mathematical strategy the elliptic integrals and their derivatives are manipulated to obtain the fundamental stresses. Here the positions of source points are external to the physical domain, avoiding singularities. A program has been developed using these approaches, its efficiency was evaluated by means of some numerical examples
publishDate 2011
dc.date.none.fl_str_mv 2011-07-08
2012-01-10
2016-12-23T14:08:14Z
2016-12-23T14:08:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MOURA, Leonardo Caputo de. Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais. 2011. 168 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011.
http://repositorio.ufes.br/handle/10/6252
identifier_str_mv MOURA, Leonardo Caputo de. Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais. 2011. 168 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011.
url http://repositorio.ufes.br/handle/10/6252
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Mecânica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Mecânica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Mecânica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1818368047979692032