Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant

Detalhes bibliográficos
Autor(a) principal: Meneghini, Mateus
Data de Publicação: 2018
Outros Autores: Anzanello, Michel, Kahmann, Alessandro, Luz Tortorella, Guilherme
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Sistemas & Gestão
Texto Completo: https://www.revistasg.uff.br/sg/article/view/1188
Resumo: This paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%.
id UFF-13_007d04e9afa7ccfa7fb452d9fb2f3e3a
oai_identifier_str oai:ojs.www.revistasg.uff.br:article/1188
network_acronym_str UFF-13
network_name_str Sistemas & Gestão
repository_id_str
spelling Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurantAjuste de previsão de demanda quantitativa com base em fatores qualitativos: estudo de caso em um restaurante fast foodForecast of DemandTime SeriesQuantitative ModelsQualitative AdjustmentFast FoodPrevisão de DemandaSéries TemporaisModelos QuantitativosAjuste QualitativoFast FoodThis paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%. Este artigo propõe um método de previsão de demanda que integra modelos quantitativos com fatores contextuais qualitativos. O método proposto seleciona o modelo matemático (quantitativo) que melhor se adapta aos dados históricos, com base no coeficiente de determinação R² e erro percentual absoluto médio (MAPE). Na sequência, as previsões geradas pelo modelo selecionado são ajustadas com base na opinião de especialistas sobre fatores contextuais (realização de eventos e reformas, por exemplo) não inclusos nos dados históricos. O método proposto foi aplicado em um restaurante fast food, realizando a previsão de demanda de carnes. O método ajustado gerou um MAPE, na pior das hipóteses, de 10% quando comparado com a demanda real do período, enquanto que o modelo quantitativo, sem a intervenção dos especialistas, gerou um MAPE de até 38%. ABEC2018-03-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCase Analysistext/htmltext/htmlapplication/pdfapplication/pdfhttps://www.revistasg.uff.br/sg/article/view/118810.20985/1980-5160.2018.v13n1.1188Sistemas & Gestão; v. 13 n. 1 (2018): MAR 2018; 68-801980-516010.20985/1980-5160.2018.v13n1reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporenghttps://www.revistasg.uff.br/sg/article/view/1188/810https://www.revistasg.uff.br/sg/article/view/1188/821https://www.revistasg.uff.br/sg/article/view/1188/836https://www.revistasg.uff.br/sg/article/view/1188/837Copyright (c) 2018 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessMeneghini, MateusAnzanello, MichelKahmann, AlessandroLuz Tortorella, Guilherme2021-06-23T20:18:01Zoai:ojs.www.revistasg.uff.br:article/1188Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2021-06-23T20:18:01Sistemas & Gestão - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
Ajuste de previsão de demanda quantitativa com base em fatores qualitativos: estudo de caso em um restaurante fast food
title Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
spellingShingle Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
Meneghini, Mateus
Forecast of Demand
Time Series
Quantitative Models
Qualitative Adjustment
Fast Food
Previsão de Demanda
Séries Temporais
Modelos Quantitativos
Ajuste Qualitativo
Fast Food
title_short Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
title_full Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
title_fullStr Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
title_full_unstemmed Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
title_sort Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
author Meneghini, Mateus
author_facet Meneghini, Mateus
Anzanello, Michel
Kahmann, Alessandro
Luz Tortorella, Guilherme
author_role author
author2 Anzanello, Michel
Kahmann, Alessandro
Luz Tortorella, Guilherme
author2_role author
author
author
dc.contributor.author.fl_str_mv Meneghini, Mateus
Anzanello, Michel
Kahmann, Alessandro
Luz Tortorella, Guilherme
dc.subject.por.fl_str_mv Forecast of Demand
Time Series
Quantitative Models
Qualitative Adjustment
Fast Food
Previsão de Demanda
Séries Temporais
Modelos Quantitativos
Ajuste Qualitativo
Fast Food
topic Forecast of Demand
Time Series
Quantitative Models
Qualitative Adjustment
Fast Food
Previsão de Demanda
Séries Temporais
Modelos Quantitativos
Ajuste Qualitativo
Fast Food
description This paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Case Analysis
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistasg.uff.br/sg/article/view/1188
10.20985/1980-5160.2018.v13n1.1188
url https://www.revistasg.uff.br/sg/article/view/1188
identifier_str_mv 10.20985/1980-5160.2018.v13n1.1188
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://www.revistasg.uff.br/sg/article/view/1188/810
https://www.revistasg.uff.br/sg/article/view/1188/821
https://www.revistasg.uff.br/sg/article/view/1188/836
https://www.revistasg.uff.br/sg/article/view/1188/837
dc.rights.driver.fl_str_mv Copyright (c) 2018 Sistemas & Gestão
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Sistemas & Gestão
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
text/html
application/pdf
application/pdf
dc.publisher.none.fl_str_mv ABEC
publisher.none.fl_str_mv ABEC
dc.source.none.fl_str_mv Sistemas & Gestão; v. 13 n. 1 (2018): MAR 2018; 68-80
1980-5160
10.20985/1980-5160.2018.v13n1
reponame:Sistemas & Gestão
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Sistemas & Gestão
collection Sistemas & Gestão
repository.name.fl_str_mv Sistemas & Gestão - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv ||sg.revista@gmail.com|| periodicos@proppi.uff.br
_version_ 1798320144437477376