Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Sistemas & Gestão |
Texto Completo: | https://www.revistasg.uff.br/sg/article/view/1188 |
Resumo: | This paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%. |
id |
UFF-13_007d04e9afa7ccfa7fb452d9fb2f3e3a |
---|---|
oai_identifier_str |
oai:ojs.www.revistasg.uff.br:article/1188 |
network_acronym_str |
UFF-13 |
network_name_str |
Sistemas & Gestão |
repository_id_str |
|
spelling |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurantAjuste de previsão de demanda quantitativa com base em fatores qualitativos: estudo de caso em um restaurante fast foodForecast of DemandTime SeriesQuantitative ModelsQualitative AdjustmentFast FoodPrevisão de DemandaSéries TemporaisModelos QuantitativosAjuste QualitativoFast FoodThis paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%. Este artigo propõe um método de previsão de demanda que integra modelos quantitativos com fatores contextuais qualitativos. O método proposto seleciona o modelo matemático (quantitativo) que melhor se adapta aos dados históricos, com base no coeficiente de determinação R² e erro percentual absoluto médio (MAPE). Na sequência, as previsões geradas pelo modelo selecionado são ajustadas com base na opinião de especialistas sobre fatores contextuais (realização de eventos e reformas, por exemplo) não inclusos nos dados históricos. O método proposto foi aplicado em um restaurante fast food, realizando a previsão de demanda de carnes. O método ajustado gerou um MAPE, na pior das hipóteses, de 10% quando comparado com a demanda real do período, enquanto que o modelo quantitativo, sem a intervenção dos especialistas, gerou um MAPE de até 38%. ABEC2018-03-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCase Analysistext/htmltext/htmlapplication/pdfapplication/pdfhttps://www.revistasg.uff.br/sg/article/view/118810.20985/1980-5160.2018.v13n1.1188Sistemas & Gestão; v. 13 n. 1 (2018): MAR 2018; 68-801980-516010.20985/1980-5160.2018.v13n1reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporenghttps://www.revistasg.uff.br/sg/article/view/1188/810https://www.revistasg.uff.br/sg/article/view/1188/821https://www.revistasg.uff.br/sg/article/view/1188/836https://www.revistasg.uff.br/sg/article/view/1188/837Copyright (c) 2018 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessMeneghini, MateusAnzanello, MichelKahmann, AlessandroLuz Tortorella, Guilherme2021-06-23T20:18:01Zoai:ojs.www.revistasg.uff.br:article/1188Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2021-06-23T20:18:01Sistemas & Gestão - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant Ajuste de previsão de demanda quantitativa com base em fatores qualitativos: estudo de caso em um restaurante fast food |
title |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
spellingShingle |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant Meneghini, Mateus Forecast of Demand Time Series Quantitative Models Qualitative Adjustment Fast Food Previsão de Demanda Séries Temporais Modelos Quantitativos Ajuste Qualitativo Fast Food |
title_short |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
title_full |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
title_fullStr |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
title_full_unstemmed |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
title_sort |
Quantitative demand forecasting adjustment based on qualitative factors: case study at a fast food restaurant |
author |
Meneghini, Mateus |
author_facet |
Meneghini, Mateus Anzanello, Michel Kahmann, Alessandro Luz Tortorella, Guilherme |
author_role |
author |
author2 |
Anzanello, Michel Kahmann, Alessandro Luz Tortorella, Guilherme |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Meneghini, Mateus Anzanello, Michel Kahmann, Alessandro Luz Tortorella, Guilherme |
dc.subject.por.fl_str_mv |
Forecast of Demand Time Series Quantitative Models Qualitative Adjustment Fast Food Previsão de Demanda Séries Temporais Modelos Quantitativos Ajuste Qualitativo Fast Food |
topic |
Forecast of Demand Time Series Quantitative Models Qualitative Adjustment Fast Food Previsão de Demanda Séries Temporais Modelos Quantitativos Ajuste Qualitativo Fast Food |
description |
This paper proposes a method of forecasting demand that integrates quantitative models with qualitative contextual factors. The proposed method selects the mathematical (quantitative) model that best fits the historical data, based on the determination coefficient R² and the mean absolute percentage error (MAPE). Next, the forecasts generated by the selected model are adjusted based on expert opinion on contextual factors (judgemental adjustment), such as events and renovations, for example, not included in the historical data. The proposed method was applied at a fast food restaurant to forecast the demand of meat. The adjusted method yielded an average error of 10% in the worst scenario when compared to the real demand of the period, whereas the quantitative model, with no judgemental adjustment, led to an average error of 38%. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Case Analysis |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/1188 10.20985/1980-5160.2018.v13n1.1188 |
url |
https://www.revistasg.uff.br/sg/article/view/1188 |
identifier_str_mv |
10.20985/1980-5160.2018.v13n1.1188 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/1188/810 https://www.revistasg.uff.br/sg/article/view/1188/821 https://www.revistasg.uff.br/sg/article/view/1188/836 https://www.revistasg.uff.br/sg/article/view/1188/837 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 Sistemas & Gestão info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 Sistemas & Gestão |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html text/html application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
ABEC |
publisher.none.fl_str_mv |
ABEC |
dc.source.none.fl_str_mv |
Sistemas & Gestão; v. 13 n. 1 (2018): MAR 2018; 68-80 1980-5160 10.20985/1980-5160.2018.v13n1 reponame:Sistemas & Gestão instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Sistemas & Gestão |
collection |
Sistemas & Gestão |
repository.name.fl_str_mv |
Sistemas & Gestão - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
||sg.revista@gmail.com|| periodicos@proppi.uff.br |
_version_ |
1798320144437477376 |