On non-smooth regular curves via a descent approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/33027 |
Resumo: | This work is devoted to the study of the problem of classifying non-smooth regular curves in projective spaces. This problem has been studied to look for counterexamples to Bertini’s theorem on the variation of singular points of linear series. Such a classification has been introduced by K.-O. Stöhr, taking advantage of the fact that a non-smooth regular curve is an equivalent object to a non-conservative function field, which in turn occurs only over non-perfect fields K of characteristic p > 0. We propose here a different way to approach this problem, relying on the fact that a non-smooth regular curve in Pn K provides a singular curve when viewed in P n K1/p , after extending its base field to K1/p For this purpose, we will proceed with the following three steps. The first one is to study K-invariant sub-schemes of P n K1/p , which are those coming from base change of sub-schemes of P n K. To do this we will need two ingredients: to see P nK as a quotient of P n K1/p by a p closed foliation and to use K-invariant connections on coherent sheaves, introduced by N. Katz. The second one is to study local invariants at non-smooth regular points of algebraic curves. As an application of the theory developed in the previous two items, we classify complete, geometrically integral, non-smooth regular curves C of genus 3, over a separably closed field K, where C ×Spec K Spec K is a non-hyperelliptic curve with normalization having genus 1. |
id |
UFF-2_529418d7f74aae8c9b88d22f8f48244f |
---|---|
oai_identifier_str |
oai:app.uff.br:1/33027 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
On non-smooth regular curves via a descent approachNon-smooth regular curvesBertini’s theoremnon-conservative function fieldsp-closed foliationsintegrable connectionsCurva MatemáticaCurva (Geometria)Curvas regulares e não lisasCorpos de funções não conservativosFolheações p-fechadasConexões integráveisConexões com p-curvatura zeroTeorema de BertiniThis work is devoted to the study of the problem of classifying non-smooth regular curves in projective spaces. This problem has been studied to look for counterexamples to Bertini’s theorem on the variation of singular points of linear series. Such a classification has been introduced by K.-O. Stöhr, taking advantage of the fact that a non-smooth regular curve is an equivalent object to a non-conservative function field, which in turn occurs only over non-perfect fields K of characteristic p > 0. We propose here a different way to approach this problem, relying on the fact that a non-smooth regular curve in Pn K provides a singular curve when viewed in P n K1/p , after extending its base field to K1/p For this purpose, we will proceed with the following three steps. The first one is to study K-invariant sub-schemes of P n K1/p , which are those coming from base change of sub-schemes of P n K. To do this we will need two ingredients: to see P nK as a quotient of P n K1/p by a p closed foliation and to use K-invariant connections on coherent sheaves, introduced by N. Katz. The second one is to study local invariants at non-smooth regular points of algebraic curves. As an application of the theory developed in the previous two items, we classify complete, geometrically integral, non-smooth regular curves C of genus 3, over a separably closed field K, where C ×Spec K Spec K is a non-hyperelliptic curve with normalization having genus 1.Este trabalho é dedicado ao estudo do problema de classificação de curvas regulares e não lisas em espaços projetivos. Este problema foi estudado para buscar contra - exemplos do teorema de Bertini sobre a variação de pontos singulares em sistemas lineares. Tal classificação foi introduzida por K.-O. Stöhr, aproveitando o fato de que uma curva regular e não lisa é um objeto equivalente a um corpo de funções não conservativo, que por sua vez ocorre apenas sobre corpos não perfeitos K de característica p > 0. Propomos aqui uma maneira diferente de abordar este problema, contando com o fato de que uma curva regular e não lisa em P fornece uma curva singular quando vista em P , após estender seu corpo de base para K 1/p. Para isso, seguiremos as seguintes três etapas. A primeira é estudar os subesquemas n K-invariantes de P , que são aqueles provenientes da mudança de base dos subesquemas 1/p K n K n K n de P . Para fazer isso vamos precisar de dois ingredientes: ver P como um quociente de P 1/p K por uma folheação p-fechada e usar conexões integráveis em feixes coerentes, introduzidas por N. Katz. A segunda é estudar invariantes locais em pontos regulares e não lisos de curvas algébricas. Como aplicação da teoria desenvolvida nos dois itens anteriores, classificamos curvas completas, geometricamente integrais, regulares e não lisas C do gênero 3, sobre um corpo separavelmente fechado K , onde C ×−SpecK é uma curva não hiperelíptica com normalização de gênero 1.58 f.Salomão, RodrigoBorelli, GiuseppeDorado, Camilo David Moreira2024-07-05T17:24:35Z2024-07-05T17:24:35Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfDORADO, Camilo David Moreira. On non-smooth regular curves via a descent approach. 2023. 58 f. Tese (Doutorado em Matemática) – Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2023.https://app.uff.br/riuff/handle/1/33027CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2024-07-05T17:26:46Zoai:app.uff.br:1/33027Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:15:13.203041Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
On non-smooth regular curves via a descent approach |
title |
On non-smooth regular curves via a descent approach |
spellingShingle |
On non-smooth regular curves via a descent approach Dorado, Camilo David Moreira Non-smooth regular curves Bertini’s theorem non-conservative function fields p-closed foliations integrable connections Curva Matemática Curva (Geometria) Curvas regulares e não lisas Corpos de funções não conservativos Folheações p-fechadas Conexões integráveis Conexões com p-curvatura zero Teorema de Bertini |
title_short |
On non-smooth regular curves via a descent approach |
title_full |
On non-smooth regular curves via a descent approach |
title_fullStr |
On non-smooth regular curves via a descent approach |
title_full_unstemmed |
On non-smooth regular curves via a descent approach |
title_sort |
On non-smooth regular curves via a descent approach |
author |
Dorado, Camilo David Moreira |
author_facet |
Dorado, Camilo David Moreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Salomão, Rodrigo Borelli, Giuseppe |
dc.contributor.author.fl_str_mv |
Dorado, Camilo David Moreira |
dc.subject.por.fl_str_mv |
Non-smooth regular curves Bertini’s theorem non-conservative function fields p-closed foliations integrable connections Curva Matemática Curva (Geometria) Curvas regulares e não lisas Corpos de funções não conservativos Folheações p-fechadas Conexões integráveis Conexões com p-curvatura zero Teorema de Bertini |
topic |
Non-smooth regular curves Bertini’s theorem non-conservative function fields p-closed foliations integrable connections Curva Matemática Curva (Geometria) Curvas regulares e não lisas Corpos de funções não conservativos Folheações p-fechadas Conexões integráveis Conexões com p-curvatura zero Teorema de Bertini |
description |
This work is devoted to the study of the problem of classifying non-smooth regular curves in projective spaces. This problem has been studied to look for counterexamples to Bertini’s theorem on the variation of singular points of linear series. Such a classification has been introduced by K.-O. Stöhr, taking advantage of the fact that a non-smooth regular curve is an equivalent object to a non-conservative function field, which in turn occurs only over non-perfect fields K of characteristic p > 0. We propose here a different way to approach this problem, relying on the fact that a non-smooth regular curve in Pn K provides a singular curve when viewed in P n K1/p , after extending its base field to K1/p For this purpose, we will proceed with the following three steps. The first one is to study K-invariant sub-schemes of P n K1/p , which are those coming from base change of sub-schemes of P n K. To do this we will need two ingredients: to see P nK as a quotient of P n K1/p by a p closed foliation and to use K-invariant connections on coherent sheaves, introduced by N. Katz. The second one is to study local invariants at non-smooth regular points of algebraic curves. As an application of the theory developed in the previous two items, we classify complete, geometrically integral, non-smooth regular curves C of genus 3, over a separably closed field K, where C ×Spec K Spec K is a non-hyperelliptic curve with normalization having genus 1. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-05T17:24:35Z 2024-07-05T17:24:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DORADO, Camilo David Moreira. On non-smooth regular curves via a descent approach. 2023. 58 f. Tese (Doutorado em Matemática) – Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2023. https://app.uff.br/riuff/handle/1/33027 |
identifier_str_mv |
DORADO, Camilo David Moreira. On non-smooth regular curves via a descent approach. 2023. 58 f. Tese (Doutorado em Matemática) – Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2023. |
url |
https://app.uff.br/riuff/handle/1/33027 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823703135092736 |