Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/3013 |
Resumo: | O confinamento de quarks e glúons continua sendo um dos maiores problemas da Física atual, mesmo depois de passados 50 anos da criação da cromodinâmica quântica. Existem diversas abordagens que procuram uma explicação para este comportamento. Um destes cenários consiste na supercondutividade dual, proposta por G. t’Hooft em 1978. Aqui, ele discute como a condensação de objetos cromomagnéticos poderia originar um potencial linear entre cargas cromoelétricas. Este mecanismo é um dos mais aceitos atualmente e nos dirige à algumas perguntas cruciais: como estes objetos poderiam se tornar relevantes em teorias de Yang-Mills puras? quais os tipos de objetos que devemos levar em consideração para gerar as propriedades do potencial confinante? Embora a primeira pergunta seja difícil de responder, a segunda pode ser atacada por técnicas diferentes, suportadas pelas descrições na rede e por descrições efetivas de ensembles 1. Nesta tese, me dedico a estudar uma classe de objetos que s˜ao bons candidatos a resolverem a segunda questão: monopólos e vórtices de centro. Quando estamos lidando com as teorias de Yang-Mills puras SU(N), o problema consiste que, em nível clássico, estes defeitos são singulares. Porém, recebendo suporte da rede (nosso laboratório em teoria quântica de campos), podemos imaginar que, devido a flutuações quânticas do vácuo, estes objetos poderiam adquirir algumas propriedades dimensionais, como tensão,rigidez e interações que ajudariam a caracterizar o ensemble magnético nos levando a descrições de campos efetivas, que podem ser utilizadas para extrair a corda elétrica confinante. Utilizando técnicas oriundas da física de polímeros obtivemos equações de difusão que representam objetos unidimensionais, como vórtices de centro em 3D ou monopólos em 4D. O surgimento de uma derivada covariante abeliana, no caso do ensemble de vórtices de centro e instantons correlacionados em 3D, e de uma derivada covariante não abeliana, no caso do ensemble de monopólos coloridos em 4D, foi fundamental paragerar os modelos efetivos correspondentes. Acreditamos que estas equações de difusão poderão ser úteis, no futuro, para relacionar as propriedades do potencial entre quarks e aquelas de seus possíveis ensembles correspondentes. |
id |
UFF-2_5bb121047a90879c12448601a248cfe5 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/3013 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-MillsTeoria de Yang-MillsEquações de difusãoConfinamentoTeorias de campo efetivasTeoria de Yang-MillsEquação de difusãoConfinamento (física)Teoria de campo efetivasYang-Mills theoriesDiffusion equationsConfinementEffective field theoriesO confinamento de quarks e glúons continua sendo um dos maiores problemas da Física atual, mesmo depois de passados 50 anos da criação da cromodinâmica quântica. Existem diversas abordagens que procuram uma explicação para este comportamento. Um destes cenários consiste na supercondutividade dual, proposta por G. t’Hooft em 1978. Aqui, ele discute como a condensação de objetos cromomagnéticos poderia originar um potencial linear entre cargas cromoelétricas. Este mecanismo é um dos mais aceitos atualmente e nos dirige à algumas perguntas cruciais: como estes objetos poderiam se tornar relevantes em teorias de Yang-Mills puras? quais os tipos de objetos que devemos levar em consideração para gerar as propriedades do potencial confinante? Embora a primeira pergunta seja difícil de responder, a segunda pode ser atacada por técnicas diferentes, suportadas pelas descrições na rede e por descrições efetivas de ensembles 1. Nesta tese, me dedico a estudar uma classe de objetos que s˜ao bons candidatos a resolverem a segunda questão: monopólos e vórtices de centro. Quando estamos lidando com as teorias de Yang-Mills puras SU(N), o problema consiste que, em nível clássico, estes defeitos são singulares. Porém, recebendo suporte da rede (nosso laboratório em teoria quântica de campos), podemos imaginar que, devido a flutuações quânticas do vácuo, estes objetos poderiam adquirir algumas propriedades dimensionais, como tensão,rigidez e interações que ajudariam a caracterizar o ensemble magnético nos levando a descrições de campos efetivas, que podem ser utilizadas para extrair a corda elétrica confinante. Utilizando técnicas oriundas da física de polímeros obtivemos equações de difusão que representam objetos unidimensionais, como vórtices de centro em 3D ou monopólos em 4D. O surgimento de uma derivada covariante abeliana, no caso do ensemble de vórtices de centro e instantons correlacionados em 3D, e de uma derivada covariante não abeliana, no caso do ensemble de monopólos coloridos em 4D, foi fundamental paragerar os modelos efetivos correspondentes. Acreditamos que estas equações de difusão poderão ser úteis, no futuro, para relacionar as propriedades do potencial entre quarks e aquelas de seus possíveis ensembles correspondentes.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorConselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado do Rio de JaneiroNowadays, quark and gluon confinement continues to be one of the most important problems in Physics. It remains unsolved, although 50 years have passed since the foundations of quantum chromodynamics. There are various approaches aimed at explaining this behaviour. One of them is the dual superconductor scenario proposed by G. t’Hooft in 1978. The general idea is that the condensation of chromomagnetics objects could originate a linear potential between chromoelectric charges. This is a promising mechanism that posses some crucial questions: how could these objects be relevant in pure YangMills? what type of object would be needed in order to generate the properties of the confining potential? While the first question is very difficult, the second one can be approached by different techniques, guided by the lattice and effective ensemble descriptions. In this thesis, I’ve been working on some good candidates to solve the second question: monopoles and center vortices. When dealing with pure SU(N) Yang-Mills theory, the problem is that at the classical level these magnetic defects are singular. Nevertheless, supported by the lattice (our laboratory in quantum field theory), we can imagine that, due to quantum vacuum fluctuations, they could acquire dimensionful properties. The tension, stiffness, as well as possible interactions that characterize the magnetic ensemble lead to effective field descriptions, that could be used to extract the corresponding confining electric string. Based on techniques borrowed from the physics of polymers, we obtained diffusion equations that describe magnetic one-dimensional objects, such as center vortices in 3D and monopoles in 4D. The appearance of an Abelian covariant derivative, for an ensemble of chains in 3D, and a non Abelian one, in the case of coloured loops in 4D, was essential to generate the corresponding effective descriptions. We believe that these diffusion equations could be helpful in the future, to relate the properties of the interquark potential and those of the possible underlying ensembles.NiteróiOxman, Luis EstebanSobreiro, Rodrigo FerreiraBarci, Daniel GustavoGuimarães, Marcelo SantosZohren, StefanTeixeira, Bruno Fernando Inchausp2017-03-07T18:35:27Z2017-03-07T18:35:27Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/3013Aluno de doutoradoCC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2020-07-27T17:11:49Zoai:app.uff.br:1/3013Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:55:18.548905Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
title |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
spellingShingle |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills Teixeira, Bruno Fernando Inchausp Teoria de Yang-Mills Equações de difusão Confinamento Teorias de campo efetivas Teoria de Yang-Mills Equação de difusão Confinamento (física) Teoria de campo efetivas Yang-Mills theories Diffusion equations Confinement Effective field theories |
title_short |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
title_full |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
title_fullStr |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
title_full_unstemmed |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
title_sort |
Equações de difusão para objetos unidimensionais no contexto das teorias de Yang-Mills |
author |
Teixeira, Bruno Fernando Inchausp |
author_facet |
Teixeira, Bruno Fernando Inchausp |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oxman, Luis Esteban Sobreiro, Rodrigo Ferreira Barci, Daniel Gustavo Guimarães, Marcelo Santos Zohren, Stefan |
dc.contributor.author.fl_str_mv |
Teixeira, Bruno Fernando Inchausp |
dc.subject.por.fl_str_mv |
Teoria de Yang-Mills Equações de difusão Confinamento Teorias de campo efetivas Teoria de Yang-Mills Equação de difusão Confinamento (física) Teoria de campo efetivas Yang-Mills theories Diffusion equations Confinement Effective field theories |
topic |
Teoria de Yang-Mills Equações de difusão Confinamento Teorias de campo efetivas Teoria de Yang-Mills Equação de difusão Confinamento (física) Teoria de campo efetivas Yang-Mills theories Diffusion equations Confinement Effective field theories |
description |
O confinamento de quarks e glúons continua sendo um dos maiores problemas da Física atual, mesmo depois de passados 50 anos da criação da cromodinâmica quântica. Existem diversas abordagens que procuram uma explicação para este comportamento. Um destes cenários consiste na supercondutividade dual, proposta por G. t’Hooft em 1978. Aqui, ele discute como a condensação de objetos cromomagnéticos poderia originar um potencial linear entre cargas cromoelétricas. Este mecanismo é um dos mais aceitos atualmente e nos dirige à algumas perguntas cruciais: como estes objetos poderiam se tornar relevantes em teorias de Yang-Mills puras? quais os tipos de objetos que devemos levar em consideração para gerar as propriedades do potencial confinante? Embora a primeira pergunta seja difícil de responder, a segunda pode ser atacada por técnicas diferentes, suportadas pelas descrições na rede e por descrições efetivas de ensembles 1. Nesta tese, me dedico a estudar uma classe de objetos que s˜ao bons candidatos a resolverem a segunda questão: monopólos e vórtices de centro. Quando estamos lidando com as teorias de Yang-Mills puras SU(N), o problema consiste que, em nível clássico, estes defeitos são singulares. Porém, recebendo suporte da rede (nosso laboratório em teoria quântica de campos), podemos imaginar que, devido a flutuações quânticas do vácuo, estes objetos poderiam adquirir algumas propriedades dimensionais, como tensão,rigidez e interações que ajudariam a caracterizar o ensemble magnético nos levando a descrições de campos efetivas, que podem ser utilizadas para extrair a corda elétrica confinante. Utilizando técnicas oriundas da física de polímeros obtivemos equações de difusão que representam objetos unidimensionais, como vórtices de centro em 3D ou monopólos em 4D. O surgimento de uma derivada covariante abeliana, no caso do ensemble de vórtices de centro e instantons correlacionados em 3D, e de uma derivada covariante não abeliana, no caso do ensemble de monopólos coloridos em 4D, foi fundamental paragerar os modelos efetivos correspondentes. Acreditamos que estas equações de difusão poderão ser úteis, no futuro, para relacionar as propriedades do potencial entre quarks e aquelas de seus possíveis ensembles correspondentes. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2017-03-07T18:35:27Z 2017-03-07T18:35:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://app.uff.br/riuff/handle/1/3013 Aluno de doutorado |
url |
https://app.uff.br/riuff/handle/1/3013 |
identifier_str_mv |
Aluno de doutorado |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Niterói |
publisher.none.fl_str_mv |
Niterói |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823608828264448 |