O espectro da matriz distância de uma família de grafos distância-birregulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | http://app.uff.br/riuff/handle/1/29245 |
Resumo: | É sabido que para um grafo conexo qualquer, a quantidade de autovalores distintos da sua matriz de adjacência é pelo menos o valor do diâmetro do grafo mais um, valendo o mesmo para as matrizes Laplaciana e Laplaciana sem sinal. Mais ainda, quando consideramos grafos distância-regulares tem-se a igualdade entre a quantidade de autovalores distintos dessas três matrizes e o diâmetro do grafo mais um. No caso da matriz distância, já se sabe que quando o grafo é distância-regular a quantidade de autovalores distintos da sua matriz distância é no máximo o valor do diâmetro mais um. Por outro lado, os grafos de Johnson são uma classe de grafos distância-regulares com diâmetro arbitrariamente grande, cuja matriz distância possui exatamente três autovalores distintos. Uma questão pertinente é saber se existem outros grafos, além dos distância-regulares, cuja quantidade de autovalores distintos da matriz distância seja no máximo o diâmetro mais um. Nesse contexto, este trabalho apresenta uma família de grafos distância-birregulares com diâmetro arbitrariamente grande e tal que a matriz distância de cada grafo possui exatamente quatro autovalores distintos. Com isto, também contribuímos com a investigação de grafos cuja matriz distância possui uma pequena quantidade de autovalores distintos. |
id |
UFF-2_7f8c0ec97e77941193a6b206cf68d9db |
---|---|
oai_identifier_str |
oai:app.uff.br:1/29245 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
O espectro da matriz distância de uma família de grafos distância-birregularesEspectro da matriz distânciaMatriz distânciaGrafo distância-birregularGrafo distância-regularMatriz (Matemática)GrafoDistance spectrumDistance matrixDistance-biregular graphDistance-regular graphÉ sabido que para um grafo conexo qualquer, a quantidade de autovalores distintos da sua matriz de adjacência é pelo menos o valor do diâmetro do grafo mais um, valendo o mesmo para as matrizes Laplaciana e Laplaciana sem sinal. Mais ainda, quando consideramos grafos distância-regulares tem-se a igualdade entre a quantidade de autovalores distintos dessas três matrizes e o diâmetro do grafo mais um. No caso da matriz distância, já se sabe que quando o grafo é distância-regular a quantidade de autovalores distintos da sua matriz distância é no máximo o valor do diâmetro mais um. Por outro lado, os grafos de Johnson são uma classe de grafos distância-regulares com diâmetro arbitrariamente grande, cuja matriz distância possui exatamente três autovalores distintos. Uma questão pertinente é saber se existem outros grafos, além dos distância-regulares, cuja quantidade de autovalores distintos da matriz distância seja no máximo o diâmetro mais um. Nesse contexto, este trabalho apresenta uma família de grafos distância-birregulares com diâmetro arbitrariamente grande e tal que a matriz distância de cada grafo possui exatamente quatro autovalores distintos. Com isto, também contribuímos com a investigação de grafos cuja matriz distância possui uma pequena quantidade de autovalores distintos.It is known that, for any connected graph, the number of distinct eigenvalues of its adjacency matrix is at least the diameter of the graph plus one. The same holds for the Laplacian and signless Laplacian matrices. Furthermore, when we consider distance-regular graphs, the number of distinct eigenvalues of these three matrices is equal to the diameter of the graph plus one. For the distance matrix, it is known that, when the graph is distance-regular, the number of distinct eigenvalues of its distance matrix is at most the diameter plus one. On the other hand, Johnson graphs is a class of distance-regular graphs with an arbitrarily large diameter, whose distance matrix has exactly three distinct eigenvalues. A pertinent question is whether there are other graphs, in addition to distance-regular graphs, whose number of distinct eigenvalues of its distance matrix is less than the diameter plus one. In this context, this work presents a family of distance-biregular graphs with an arbitrarily large diameter and such that its distance matrix has exactly four distinct eigenvalues. With this, we also contribute to the investigation of graphs whose distance matrix has a small amount of different eigenvalues. With this result, we also contribute to the search for graphs whose distance matrix has a small number of eigenvalues.77 f.Del-Vecchio, Renata Raposohttp://lattes.cnpq.br/1321582809712928Silva, Tayná Lobo da2023-06-29T18:20:59Z2023-06-29T18:20:59Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSILVA, Tayná Lobo da. O espectro da matriz distância de uma família de grafos distância-birregulares. 2021. 77 f. Dissertação (Mestrado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática, Universidade Federal Fluminense, Niterói, 2021.http://app.uff.br/riuff/handle/1/29245CC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2023-06-29T18:21:03Zoai:app.uff.br:1/29245Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:06:05.211177Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
O espectro da matriz distância de uma família de grafos distância-birregulares |
title |
O espectro da matriz distância de uma família de grafos distância-birregulares |
spellingShingle |
O espectro da matriz distância de uma família de grafos distância-birregulares Silva, Tayná Lobo da Espectro da matriz distância Matriz distância Grafo distância-birregular Grafo distância-regular Matriz (Matemática) Grafo Distance spectrum Distance matrix Distance-biregular graph Distance-regular graph |
title_short |
O espectro da matriz distância de uma família de grafos distância-birregulares |
title_full |
O espectro da matriz distância de uma família de grafos distância-birregulares |
title_fullStr |
O espectro da matriz distância de uma família de grafos distância-birregulares |
title_full_unstemmed |
O espectro da matriz distância de uma família de grafos distância-birregulares |
title_sort |
O espectro da matriz distância de uma família de grafos distância-birregulares |
author |
Silva, Tayná Lobo da |
author_facet |
Silva, Tayná Lobo da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Del-Vecchio, Renata Raposo http://lattes.cnpq.br/1321582809712928 |
dc.contributor.author.fl_str_mv |
Silva, Tayná Lobo da |
dc.subject.por.fl_str_mv |
Espectro da matriz distância Matriz distância Grafo distância-birregular Grafo distância-regular Matriz (Matemática) Grafo Distance spectrum Distance matrix Distance-biregular graph Distance-regular graph |
topic |
Espectro da matriz distância Matriz distância Grafo distância-birregular Grafo distância-regular Matriz (Matemática) Grafo Distance spectrum Distance matrix Distance-biregular graph Distance-regular graph |
description |
É sabido que para um grafo conexo qualquer, a quantidade de autovalores distintos da sua matriz de adjacência é pelo menos o valor do diâmetro do grafo mais um, valendo o mesmo para as matrizes Laplaciana e Laplaciana sem sinal. Mais ainda, quando consideramos grafos distância-regulares tem-se a igualdade entre a quantidade de autovalores distintos dessas três matrizes e o diâmetro do grafo mais um. No caso da matriz distância, já se sabe que quando o grafo é distância-regular a quantidade de autovalores distintos da sua matriz distância é no máximo o valor do diâmetro mais um. Por outro lado, os grafos de Johnson são uma classe de grafos distância-regulares com diâmetro arbitrariamente grande, cuja matriz distância possui exatamente três autovalores distintos. Uma questão pertinente é saber se existem outros grafos, além dos distância-regulares, cuja quantidade de autovalores distintos da matriz distância seja no máximo o diâmetro mais um. Nesse contexto, este trabalho apresenta uma família de grafos distância-birregulares com diâmetro arbitrariamente grande e tal que a matriz distância de cada grafo possui exatamente quatro autovalores distintos. Com isto, também contribuímos com a investigação de grafos cuja matriz distância possui uma pequena quantidade de autovalores distintos. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-29T18:20:59Z 2023-06-29T18:20:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, Tayná Lobo da. O espectro da matriz distância de uma família de grafos distância-birregulares. 2021. 77 f. Dissertação (Mestrado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática, Universidade Federal Fluminense, Niterói, 2021. http://app.uff.br/riuff/handle/1/29245 |
identifier_str_mv |
SILVA, Tayná Lobo da. O espectro da matriz distância de uma família de grafos distância-birregulares. 2021. 77 f. Dissertação (Mestrado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática, Universidade Federal Fluminense, Niterói, 2021. |
url |
http://app.uff.br/riuff/handle/1/29245 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823660263014400 |