Forecasts of multivariate time series sampled from industrial machinery sensors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/14392 |
Resumo: | Prognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change model |
id |
UFF-2_a55255cfa967f36091988a10d3a1f653 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/14392 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Forecasts of multivariate time series sampled from industrial machinery sensorsPrognosticsTime seriesForecastingNeural networksARIMARede NeuralRede Neural ArtificialARIMAPrognósticosSeries temporaisPrevisãoRedes neuraisPrognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change modelPrognósticos avaliam e preveem a condição futura de máquinas, o que inclui detectar falhas incipientes e prever a vida útil remanescente. Vários estudos trataram prognósticos de um ponto de vista de previsão de séries temporais. O objetivo principal desse estudo é avaliar o desempenho de um conjunto de métodos na previsão de valores futuros em um conjunto de séries temporais coletadas de sensores instalados em uma turbina a gás industrial. Métodos de previsão avaliados incluem o uso de redes neurais (FNN e LSTM) univariadas e multivariadas, amortecimento exponencial e modelos ARIMA. Os resultados mostram que o uso de modelos ARIMA para previsão no conjunto de séries temporais estudado é o melhor método para aplicar por padrão, e que é o único método de previsão que consistentemente supera um modelo ingénuo simples que assume ausência de mudança no tempo107f.Rio das OstrasSilva, Leila Weitzel Coelho DaMoreira, Leonard BarretoSilva, Zenaide Carvalho daSobral, Ana Paula Barbosahttp://lattes.cnpq.br/7695040641150284http://lattes.cnpq.br/2768655384552211http://lattes.cnpq.br/4370410680845541http://lattes.cnpq.br/1253432326873186http://lattes.cnpq.br/4208059199564860Santos, Heron Felipe Rosas dos2020-07-20T23:01:40Z2020-07-20T23:01:40Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSantos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019.https://app.uff.br/riuff/handle/1/14392Aluno de MestradoDOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2022-10-20T14:28:16Zoai:app.uff.br:1/14392Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:47:30.054698Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Forecasts of multivariate time series sampled from industrial machinery sensors |
title |
Forecasts of multivariate time series sampled from industrial machinery sensors |
spellingShingle |
Forecasts of multivariate time series sampled from industrial machinery sensors Santos, Heron Felipe Rosas dos Prognostics Time series Forecasting Neural networks ARIMA Rede Neural Rede Neural Artificial ARIMA Prognósticos Series temporais Previsão Redes neurais |
title_short |
Forecasts of multivariate time series sampled from industrial machinery sensors |
title_full |
Forecasts of multivariate time series sampled from industrial machinery sensors |
title_fullStr |
Forecasts of multivariate time series sampled from industrial machinery sensors |
title_full_unstemmed |
Forecasts of multivariate time series sampled from industrial machinery sensors |
title_sort |
Forecasts of multivariate time series sampled from industrial machinery sensors |
author |
Santos, Heron Felipe Rosas dos |
author_facet |
Santos, Heron Felipe Rosas dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Leila Weitzel Coelho Da Moreira, Leonard Barreto Silva, Zenaide Carvalho da Sobral, Ana Paula Barbosa http://lattes.cnpq.br/7695040641150284 http://lattes.cnpq.br/2768655384552211 http://lattes.cnpq.br/4370410680845541 http://lattes.cnpq.br/1253432326873186 http://lattes.cnpq.br/4208059199564860 |
dc.contributor.author.fl_str_mv |
Santos, Heron Felipe Rosas dos |
dc.subject.por.fl_str_mv |
Prognostics Time series Forecasting Neural networks ARIMA Rede Neural Rede Neural Artificial ARIMA Prognósticos Series temporais Previsão Redes neurais |
topic |
Prognostics Time series Forecasting Neural networks ARIMA Rede Neural Rede Neural Artificial ARIMA Prognósticos Series temporais Previsão Redes neurais |
description |
Prognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change model |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2020-07-20T23:01:40Z 2020-07-20T23:01:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Santos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019. https://app.uff.br/riuff/handle/1/14392 Aluno de Mestrado DOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503 |
identifier_str_mv |
Santos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019. Aluno de Mestrado DOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503 |
url |
https://app.uff.br/riuff/handle/1/14392 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Rio das Ostras |
publisher.none.fl_str_mv |
Rio das Ostras |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823569995300864 |