Forecasts of multivariate time series sampled from industrial machinery sensors

Detalhes bibliográficos
Autor(a) principal: Santos, Heron Felipe Rosas dos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/14392
Resumo: Prognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change model
id UFF-2_a55255cfa967f36091988a10d3a1f653
oai_identifier_str oai:app.uff.br:1/14392
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Forecasts of multivariate time series sampled from industrial machinery sensorsPrognosticsTime seriesForecastingNeural networksARIMARede NeuralRede Neural ArtificialARIMAPrognósticosSeries temporaisPrevisãoRedes neuraisPrognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change modelPrognósticos avaliam e preveem a condição futura de máquinas, o que inclui detectar falhas incipientes e prever a vida útil remanescente. Vários estudos trataram prognósticos de um ponto de vista de previsão de séries temporais. O objetivo principal desse estudo é avaliar o desempenho de um conjunto de métodos na previsão de valores futuros em um conjunto de séries temporais coletadas de sensores instalados em uma turbina a gás industrial. Métodos de previsão avaliados incluem o uso de redes neurais (FNN e LSTM) univariadas e multivariadas, amortecimento exponencial e modelos ARIMA. Os resultados mostram que o uso de modelos ARIMA para previsão no conjunto de séries temporais estudado é o melhor método para aplicar por padrão, e que é o único método de previsão que consistentemente supera um modelo ingénuo simples que assume ausência de mudança no tempo107f.Rio das OstrasSilva, Leila Weitzel Coelho DaMoreira, Leonard BarretoSilva, Zenaide Carvalho daSobral, Ana Paula Barbosahttp://lattes.cnpq.br/7695040641150284http://lattes.cnpq.br/2768655384552211http://lattes.cnpq.br/4370410680845541http://lattes.cnpq.br/1253432326873186http://lattes.cnpq.br/4208059199564860Santos, Heron Felipe Rosas dos2020-07-20T23:01:40Z2020-07-20T23:01:40Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSantos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019.https://app.uff.br/riuff/handle/1/14392Aluno de MestradoDOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2022-10-20T14:28:16Zoai:app.uff.br:1/14392Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:47:30.054698Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Forecasts of multivariate time series sampled from industrial machinery sensors
title Forecasts of multivariate time series sampled from industrial machinery sensors
spellingShingle Forecasts of multivariate time series sampled from industrial machinery sensors
Santos, Heron Felipe Rosas dos
Prognostics
Time series
Forecasting
Neural networks
ARIMA
Rede Neural
Rede Neural Artificial
ARIMA
Prognósticos
Series temporais
Previsão
Redes neurais
title_short Forecasts of multivariate time series sampled from industrial machinery sensors
title_full Forecasts of multivariate time series sampled from industrial machinery sensors
title_fullStr Forecasts of multivariate time series sampled from industrial machinery sensors
title_full_unstemmed Forecasts of multivariate time series sampled from industrial machinery sensors
title_sort Forecasts of multivariate time series sampled from industrial machinery sensors
author Santos, Heron Felipe Rosas dos
author_facet Santos, Heron Felipe Rosas dos
author_role author
dc.contributor.none.fl_str_mv Silva, Leila Weitzel Coelho Da
Moreira, Leonard Barreto
Silva, Zenaide Carvalho da
Sobral, Ana Paula Barbosa
http://lattes.cnpq.br/7695040641150284
http://lattes.cnpq.br/2768655384552211
http://lattes.cnpq.br/4370410680845541
http://lattes.cnpq.br/1253432326873186
http://lattes.cnpq.br/4208059199564860
dc.contributor.author.fl_str_mv Santos, Heron Felipe Rosas dos
dc.subject.por.fl_str_mv Prognostics
Time series
Forecasting
Neural networks
ARIMA
Rede Neural
Rede Neural Artificial
ARIMA
Prognósticos
Series temporais
Previsão
Redes neurais
topic Prognostics
Time series
Forecasting
Neural networks
ARIMA
Rede Neural
Rede Neural Artificial
ARIMA
Prognósticos
Series temporais
Previsão
Redes neurais
description Prognostics assesses and predicts future machine health, which includes detecting incipient failures and predicting remaining useful life. Several studies have treated prognostics from a time series forecasting perspective. The main goal of this study is to evaluate the performance of a set of methods in the prediction of future values on a dataset of time series collected from sensors installed in an industrial gas turbine. Forecasting methods tested include the use of multivariate and univariate neural networks (FNN and LSTM), exponential smoothing and ARIMA models. Results show that the use of ARIMA models to forecast on the studied dataset is the best default method to apply, and is the only forecasting method that consistently beats a simple naïve no-change model
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-07-20T23:01:40Z
2020-07-20T23:01:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Santos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019.
https://app.uff.br/riuff/handle/1/14392
Aluno de Mestrado
DOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503
identifier_str_mv Santos, Heron Felipe Rosas dos. Forecasts of Multivariate Time Series Sampled From Industrial Machinery Sensors. 2019. 107 f. Dissertação (Mestrado Profissional em Engenharia de Produção e Sistemas Computacionais) - Universidade Federal Fluminense, Rio das Ostras, 2019.
Aluno de Mestrado
DOI: http://dx.doi.org/10.22409/PPG-MESC.2019.m.04053481503
url https://app.uff.br/riuff/handle/1/14392
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Rio das Ostras
publisher.none.fl_str_mv Rio das Ostras
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823569995300864