Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | http://app.uff.br/riuff/handle/1/29220 |
Resumo: | In this thesis, we study self-expanders of the mean curvature flow and special constant weighted mean curvature hypersurfaces in Euclidean space. In the first part of this thesis, we mainly study immersed self-expander hypersurfaces in Euclidean space whose mean curvatures have some linear growth controls. We discuss the volume growth and the finiteness of the weighted volumes. We get some properties that characterize the hyperplanes through the origin as self-expanders. We give sufficient conditions for the self-expander hypersurfaces to be products of self-expander curves and flat subspaces. We also study the spectrums of the weighted Laplacian and the L-stability operator. The upper bound of the bottom of the spectrum of the weighted Laplacian, and upper and lower bounds for the bottom of the spectrum of the L-stability operator are given. In the second part, we study two kinds of constant weighted mean curvature hypersurfaces in Euclidean space: λ-hypersurfaces and λ-self-expanders, that are the hypersurfaces Σ whose mean curvature H satisfies H = λ + hx,ni 2 and H = λ − hx,ni 2 , respectively, where λ ∈ R is constant, x is the position vector in R n+1 and n is the outward unit normal field on Σ. They are solutions of the Gaussian isoperimetric problem and the isoperimetric problem with the same weighted volume form as self-expanders’, respectively. We obtain various results that characterize the hyperplanes, spheres and cylinders as λ-hypersurfaces and λ-self-expanders, respectively. Besides, in the case of properly immersed λ-self-expanders, we get the discreteness of the spectrum of the weighted Laplacian, give the upper and lower bounds for the bottom of the spectrum of the weighted Laplacian and prove an inequality between the bottom of the spectrum of the weighted Laplacian and the bottom of the spectrum of the L-stability operator. The results in the thesis have been partially included in our articles [AC20], [AM21a] and [AM21b]. |
id |
UFF-2_f4b4c0778d0c643cd04569af913af306 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/29220 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfacesSelf-expandeSelf-shrinkerSelf-shrinkerλ-self-expanderEquaçãoÁlgebraIn this thesis, we study self-expanders of the mean curvature flow and special constant weighted mean curvature hypersurfaces in Euclidean space. In the first part of this thesis, we mainly study immersed self-expander hypersurfaces in Euclidean space whose mean curvatures have some linear growth controls. We discuss the volume growth and the finiteness of the weighted volumes. We get some properties that characterize the hyperplanes through the origin as self-expanders. We give sufficient conditions for the self-expander hypersurfaces to be products of self-expander curves and flat subspaces. We also study the spectrums of the weighted Laplacian and the L-stability operator. The upper bound of the bottom of the spectrum of the weighted Laplacian, and upper and lower bounds for the bottom of the spectrum of the L-stability operator are given. In the second part, we study two kinds of constant weighted mean curvature hypersurfaces in Euclidean space: λ-hypersurfaces and λ-self-expanders, that are the hypersurfaces Σ whose mean curvature H satisfies H = λ + hx,ni 2 and H = λ − hx,ni 2 , respectively, where λ ∈ R is constant, x is the position vector in R n+1 and n is the outward unit normal field on Σ. They are solutions of the Gaussian isoperimetric problem and the isoperimetric problem with the same weighted volume form as self-expanders’, respectively. We obtain various results that characterize the hyperplanes, spheres and cylinders as λ-hypersurfaces and λ-self-expanders, respectively. Besides, in the case of properly immersed λ-self-expanders, we get the discreteness of the spectrum of the weighted Laplacian, give the upper and lower bounds for the bottom of the spectrum of the weighted Laplacian and prove an inequality between the bottom of the spectrum of the weighted Laplacian and the bottom of the spectrum of the L-stability operator. The results in the thesis have been partially included in our articles [AC20], [AM21a] and [AM21b].Nesta tese, estudamos self-expanders do fluxo de curvatura média e hipersuperfícies especiais com curvatura média com peso constante no espaço euclidiano. Na primeira parte desta tese, estudamos principalmente hipersuperfícies self-expanders imersas no espaço euclidiano cujas curvaturas médias apresentam alguns controles de crescimento linear. Discutimos o crescimento do volume e a finitude dos volumes com peso. Obtemos algumas propriedades que caracterizam os hiperplanos passando pela origem como self-expanders. Fornecemos condições suficientes para que as hipersuperfícies self-expanders sejam produtos de curvas self-expanders e subespaços planos. Também estudamos os espectros do Laplaciano com peso e do operador L-estabilidade. O limite superior do ínfimo do espectro do Laplaciano com peso e os limites superior e inferior do ínfimo do espectro do operador L-estabilidade são fornecidos. Na segunda parte, estudamos dois tipos de hipersuperfícies com curvatura média com peso constante no espaço euclidiano: λ-hipersuperfícies e λ-self-expanders, que são as hipersuperfí cies Σ cuja curvatura média H satisfaz H = λ +hx,ni/2 e H = λ − hx,ni/2 , respectivamente, onde λ ∈ R é constante, x é o vetor posição em Rn+1 e n é o campo normal unitário exterior sobre Σ. Elas são soluções do problema isoperimétrico Gaussiano e do problema isoperimétrico com a mesma forma do volume com peso dos self-expanders, respectivamente. Obtivemos vários resultados que caracterizam os hiperplanos, esferas e cilindros como λ-hipersuperfícies e λ-self expanders, respectivamente. Além disso, no caso de λ-self-expanders propriamente imersos, obtemos que o espectro do Laplaciano com peso é discreto, fornecemos os limites superior e inferior para o ínfimo do espectro do Laplaciano com peso e provamos uma desigualdade entre o ínfimo do espectro do Laplaciano com peso e o ínfimo do espectro do operador L-estabilidade. Os resultados da tese foram parcialmente incluídos em nossos artigos [AC20], [AM21a] e [AM21b].98 f.Cheng, XuVillca, Saul Ancari2023-06-26T19:11:27Z2023-06-26T19:11:27Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfVILLCA, Saul Ancari. Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces . 2021. 98 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.http://app.uff.br/riuff/handle/1/29220CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2023-06-26T19:11:30Zoai:app.uff.br:1/29220Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:11:29.904664Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
title |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
spellingShingle |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces Villca, Saul Ancari Self-expande Self-shrinker Self-shrinker λ-self-expander Equação Álgebra |
title_short |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
title_full |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
title_fullStr |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
title_full_unstemmed |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
title_sort |
Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces |
author |
Villca, Saul Ancari |
author_facet |
Villca, Saul Ancari |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cheng, Xu |
dc.contributor.author.fl_str_mv |
Villca, Saul Ancari |
dc.subject.por.fl_str_mv |
Self-expande Self-shrinker Self-shrinker λ-self-expander Equação Álgebra |
topic |
Self-expande Self-shrinker Self-shrinker λ-self-expander Equação Álgebra |
description |
In this thesis, we study self-expanders of the mean curvature flow and special constant weighted mean curvature hypersurfaces in Euclidean space. In the first part of this thesis, we mainly study immersed self-expander hypersurfaces in Euclidean space whose mean curvatures have some linear growth controls. We discuss the volume growth and the finiteness of the weighted volumes. We get some properties that characterize the hyperplanes through the origin as self-expanders. We give sufficient conditions for the self-expander hypersurfaces to be products of self-expander curves and flat subspaces. We also study the spectrums of the weighted Laplacian and the L-stability operator. The upper bound of the bottom of the spectrum of the weighted Laplacian, and upper and lower bounds for the bottom of the spectrum of the L-stability operator are given. In the second part, we study two kinds of constant weighted mean curvature hypersurfaces in Euclidean space: λ-hypersurfaces and λ-self-expanders, that are the hypersurfaces Σ whose mean curvature H satisfies H = λ + hx,ni 2 and H = λ − hx,ni 2 , respectively, where λ ∈ R is constant, x is the position vector in R n+1 and n is the outward unit normal field on Σ. They are solutions of the Gaussian isoperimetric problem and the isoperimetric problem with the same weighted volume form as self-expanders’, respectively. We obtain various results that characterize the hyperplanes, spheres and cylinders as λ-hypersurfaces and λ-self-expanders, respectively. Besides, in the case of properly immersed λ-self-expanders, we get the discreteness of the spectrum of the weighted Laplacian, give the upper and lower bounds for the bottom of the spectrum of the weighted Laplacian and prove an inequality between the bottom of the spectrum of the weighted Laplacian and the bottom of the spectrum of the L-stability operator. The results in the thesis have been partially included in our articles [AC20], [AM21a] and [AM21b]. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-26T19:11:27Z 2023-06-26T19:11:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
VILLCA, Saul Ancari. Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces . 2021. 98 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021. http://app.uff.br/riuff/handle/1/29220 |
identifier_str_mv |
VILLCA, Saul Ancari. Self-expanders of mean curvature flow and constant weighted mean curvature hypersurfaces . 2021. 98 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021. |
url |
http://app.uff.br/riuff/handle/1/29220 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823556609179648 |