Visão computacional aplicada na classificação de grãos de milho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFFS (Repositório Digital da UFFS) |
Texto Completo: | https://rd.uffs.edu.br/handle/prefix/3366 |
Resumo: | Este trabalho propõe utilizar visão computacional para classificar grãos de milho. Em virtude da subjetividade que o método manual impõe, utilizar técnicas de visão computacional e aprendizado de máquina podem auxiliar na diminuição dos erros ocasionados pela subjetividade do classificador. O trabalho proposto apresenta um protótipo de aquisição com controle de iluminação, a criação de um banco de imagens, uma análise exploratória nas características dos grãos de milho e testes de 3 datasets em 3 modelos conhecidos de aprendizado de máquina, sendo eles KNN, Random Forest e SVM, chegando a acurácia de 83% para classificar três classes de grãos de milho. |
id |
UFFS_21f215702afdeda023385e7a0a15d4f4 |
---|---|
oai_identifier_str |
oai:rd.uffs.edu.br:prefix/3366 |
network_acronym_str |
UFFS |
network_name_str |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
repository_id_str |
3924 |
spelling |
Padilha, Adriano SanickRosin, Juliana Isabel de Freitas20192020-02-03T15:19:52Z20192020-02-03T15:19:52Z2019https://rd.uffs.edu.br/handle/prefix/3366Este trabalho propõe utilizar visão computacional para classificar grãos de milho. Em virtude da subjetividade que o método manual impõe, utilizar técnicas de visão computacional e aprendizado de máquina podem auxiliar na diminuição dos erros ocasionados pela subjetividade do classificador. O trabalho proposto apresenta um protótipo de aquisição com controle de iluminação, a criação de um banco de imagens, uma análise exploratória nas características dos grãos de milho e testes de 3 datasets em 3 modelos conhecidos de aprendizado de máquina, sendo eles KNN, Random Forest e SVM, chegando a acurácia de 83% para classificar três classes de grãos de milho.This paper proposes to use computer vision to classify corn grains. Due to the subjectivity that the manual method imposes, using computer vision techniques and machine learning can help to reduce the errors caused by the subjectivity of the classifier. The proposed work presents a prototype acquisition with lighting control, the creation of an image bank, an exploratory analysis on the characteristics of corn grains and tests of 3 data sets in 3 known machine learning models, KNN, Random Forest and SVM, reaching an accuracy of 83% to classify three maize grain classes.Submitted by Suelen Spindola Bilhar (suelen.bilhar@uffs.edu.br) on 2019-12-20T16:37:34Z No. of bitstreams: 1 ROSIN.pdf: 10968057 bytes, checksum: c249f41f0b8360961f7105e729ffff11 (MD5)Approved for entry into archive by Franciele Scaglioni da Cruz (franciele.cruz@uffs.edu.br) on 2020-02-03T15:19:52Z (GMT) No. of bitstreams: 1 ROSIN.pdf: 10968057 bytes, checksum: c249f41f0b8360961f7105e729ffff11 (MD5)Made available in DSpace on 2020-02-03T15:19:52Z (GMT). No. of bitstreams: 1 ROSIN.pdf: 10968057 bytes, checksum: c249f41f0b8360961f7105e729ffff11 (MD5) Previous issue date: 2019porUniversidade Federal da Fronteira SulUFFSBrasilCampus ChapecóVisão computacionalMilhoClassificaçãoVisão computacional aplicada na classificação de grãos de milhoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFFS (Repositório Digital da UFFS)instname:Universidade Federal Fronteira do Sul (UFFS)instacron:UFFSLICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://rd.uffs.edu.br:8443/bitstream/prefix/3366/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52ORIGINALROSIN.pdfROSIN.pdfapplication/pdf10968057https://rd.uffs.edu.br:8443/bitstream/prefix/3366/1/ROSIN.pdfc249f41f0b8360961f7105e729ffff11MD51prefix/33662020-02-03 13:19:52.173oai:rd.uffs.edu.br:prefix/3366TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://rd.uffs.edu.br/oai/requestopendoar:39242020-02-03T15:19:52Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS)false |
dc.title.pt_BR.fl_str_mv |
Visão computacional aplicada na classificação de grãos de milho |
title |
Visão computacional aplicada na classificação de grãos de milho |
spellingShingle |
Visão computacional aplicada na classificação de grãos de milho Rosin, Juliana Isabel de Freitas Visão computacional Milho Classificação |
title_short |
Visão computacional aplicada na classificação de grãos de milho |
title_full |
Visão computacional aplicada na classificação de grãos de milho |
title_fullStr |
Visão computacional aplicada na classificação de grãos de milho |
title_full_unstemmed |
Visão computacional aplicada na classificação de grãos de milho |
title_sort |
Visão computacional aplicada na classificação de grãos de milho |
author |
Rosin, Juliana Isabel de Freitas |
author_facet |
Rosin, Juliana Isabel de Freitas |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Padilha, Adriano Sanick |
dc.contributor.author.fl_str_mv |
Rosin, Juliana Isabel de Freitas |
contributor_str_mv |
Padilha, Adriano Sanick |
dc.subject.por.fl_str_mv |
Visão computacional Milho Classificação |
topic |
Visão computacional Milho Classificação |
description |
Este trabalho propõe utilizar visão computacional para classificar grãos de milho. Em virtude da subjetividade que o método manual impõe, utilizar técnicas de visão computacional e aprendizado de máquina podem auxiliar na diminuição dos erros ocasionados pela subjetividade do classificador. O trabalho proposto apresenta um protótipo de aquisição com controle de iluminação, a criação de um banco de imagens, uma análise exploratória nas características dos grãos de milho e testes de 3 datasets em 3 modelos conhecidos de aprendizado de máquina, sendo eles KNN, Random Forest e SVM, chegando a acurácia de 83% para classificar três classes de grãos de milho. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.date.available.fl_str_mv |
2019 2020-02-03T15:19:52Z |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-02-03T15:19:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rd.uffs.edu.br/handle/prefix/3366 |
url |
https://rd.uffs.edu.br/handle/prefix/3366 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Fronteira Sul |
dc.publisher.initials.fl_str_mv |
UFFS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Campus Chapecó |
publisher.none.fl_str_mv |
Universidade Federal da Fronteira Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFFS (Repositório Digital da UFFS) instname:Universidade Federal Fronteira do Sul (UFFS) instacron:UFFS |
instname_str |
Universidade Federal Fronteira do Sul (UFFS) |
instacron_str |
UFFS |
institution |
UFFS |
reponame_str |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
collection |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
bitstream.url.fl_str_mv |
https://rd.uffs.edu.br:8443/bitstream/prefix/3366/2/license.txt https://rd.uffs.edu.br:8443/bitstream/prefix/3366/1/ROSIN.pdf |
bitstream.checksum.fl_str_mv |
43cd690d6a359e86c1fe3d5b7cba0c9b c249f41f0b8360961f7105e729ffff11 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS) |
repository.mail.fl_str_mv |
|
_version_ |
1809094616358584320 |