APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista da Faculdade de Direito da UFG (Online) |
Texto Completo: | https://revistas.ufg.br/revfd/article/view/70086 |
Resumo: | One of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents. |
id |
UFG-14_f6316d4d212506fca5e36742a04fa5a4 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ufg.br:article/70086 |
network_acronym_str |
UFG-14 |
network_name_str |
Revista da Faculdade de Direito da UFG (Online) |
repository_id_str |
|
spelling |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICEAPLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO E CLASSIFICAÇÃO AUTOMÁTICA DE INCIDENTE DE RESOLUÇÃO DE DEMANDA REPETITIVA NO TRIBUNAL DE JUSTIÇA DO BRASILOne of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents.Uma das áreas do conhecimento com diversas possibilidades de aplicação da inteligência artificial é o Direito. Mudanças recentes na legislação brasileira têm facilitado o uso de recursos de tecnologia da informação para agilizar o andamento e julgamento de casos, como incidentes de resolução de demanda repetitiva (IRDRs). O objetivo deste artigo é desenvolver e aplicar método de IA que possa identificar e relacionar novos processos judiciais com julgamentos repetitivos consolidados (IRDRs). Os conjuntos de dados utilizados nesta pesquisa são documentos de julgamento repetitivo de juízes e consolidados em IRDRs. Os documentos judiciais são transformados em vetores com pesos. A construção dos pesos no vetor é baseada na coocorrência dos termos, calculada a partir da combinação do termo frequência-frequência inversa do documento e sua similaridade no corpus do mesmo IRDR. Redes neurais artificiais são treinadas com esses vetores para reconhecer se novas ações judiciais estão relacionadas a um IRDR. A metodologia proposta obteve 93% de acurácia, 97% de precisão e 93% de recuperação nas simulações, o método pode agilizar o trabalho do Tribunal de Justiça, buscando solucionar os conflitos da sociedade o mais rápido possível. Embora o método possa ser utilizado em diversos cenários, as simulações foram realizadas em documentos em texto do Poder Judiciário.Universidade Federal de Goiás2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliação por "double-blind review"application/pdfhttps://revistas.ufg.br/revfd/article/view/7008610.5216/rfd.v45i2.70086Revista Facultad de Derecho UFG; Vol. 45 Núm. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFGMagazine de la faculté de droit UFG; Vol. 45 No. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFGRevista da Faculdade de Direito da UFG; v. 45 n. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG0101-7187reponame:Revista da Faculdade de Direito da UFG (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGporhttps://revistas.ufg.br/revfd/article/view/70086/37740Castro Júnior, Antônio Pires Wainer, Gabriel A.Calixto, Wesley P. info:eu-repo/semantics/openAccess2023-09-15T21:15:11Zoai:ojs.revistas.ufg.br:article/70086Revistahttps://revistas.ufg.br/revfdPUBhttps://revistas.ufg.br/revfd/oaimcvidotte@gmail.com || rfdufg@gmail.com2317-67330101-7187opendoar:2023-09-15T21:15:11Revista da Faculdade de Direito da UFG (Online) - Universidade Federal de Goiás (UFG)false |
dc.title.none.fl_str_mv |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO E CLASSIFICAÇÃO AUTOMÁTICA DE INCIDENTE DE RESOLUÇÃO DE DEMANDA REPETITIVA NO TRIBUNAL DE JUSTIÇA DO BRASIL |
title |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
spellingShingle |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE Castro Júnior, Antônio Pires |
title_short |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
title_full |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
title_fullStr |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
title_full_unstemmed |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
title_sort |
APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE |
author |
Castro Júnior, Antônio Pires |
author_facet |
Castro Júnior, Antônio Pires Wainer, Gabriel A. Calixto, Wesley P. |
author_role |
author |
author2 |
Wainer, Gabriel A. Calixto, Wesley P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castro Júnior, Antônio Pires Wainer, Gabriel A. Calixto, Wesley P. |
description |
One of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliação por "double-blind review" |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufg.br/revfd/article/view/70086 10.5216/rfd.v45i2.70086 |
url |
https://revistas.ufg.br/revfd/article/view/70086 |
identifier_str_mv |
10.5216/rfd.v45i2.70086 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufg.br/revfd/article/view/70086/37740 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
Revista Facultad de Derecho UFG; Vol. 45 Núm. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG Magazine de la faculté de droit UFG; Vol. 45 No. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG Revista da Faculdade de Direito da UFG; v. 45 n. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG 0101-7187 reponame:Revista da Faculdade de Direito da UFG (Online) instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Revista da Faculdade de Direito da UFG (Online) |
collection |
Revista da Faculdade de Direito da UFG (Online) |
repository.name.fl_str_mv |
Revista da Faculdade de Direito da UFG (Online) - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
mcvidotte@gmail.com || rfdufg@gmail.com |
_version_ |
1796798165783937024 |