APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE

Detalhes bibliográficos
Autor(a) principal: Castro Júnior, Antônio Pires
Data de Publicação: 2022
Outros Autores: Wainer, Gabriel A., Calixto, Wesley P.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista da Faculdade de Direito da UFG (Online)
Texto Completo: https://revistas.ufg.br/revfd/article/view/70086
Resumo: One of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents.
id UFG-14_f6316d4d212506fca5e36742a04fa5a4
oai_identifier_str oai:ojs.revistas.ufg.br:article/70086
network_acronym_str UFG-14
network_name_str Revista da Faculdade de Direito da UFG (Online)
repository_id_str
spelling APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICEAPLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO E CLASSIFICAÇÃO AUTOMÁTICA DE INCIDENTE DE RESOLUÇÃO DE DEMANDA REPETITIVA NO TRIBUNAL DE JUSTIÇA DO BRASILOne of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents.Uma das áreas do conhecimento com diversas possibilidades de aplicação da inteligência artificial é o Direito. Mudanças recentes na legislação brasileira têm facilitado o uso de recursos de tecnologia da informação para agilizar o andamento e julgamento de casos, como incidentes de resolução de demanda repetitiva (IRDRs). O objetivo deste artigo é desenvolver e aplicar método de IA que possa identificar e relacionar novos processos judiciais com julgamentos repetitivos consolidados (IRDRs). Os conjuntos de dados utilizados nesta pesquisa são documentos de julgamento repetitivo de juízes e consolidados em IRDRs. Os documentos judiciais são transformados em vetores com pesos. A construção dos pesos no vetor é baseada na coocorrência dos termos, calculada a partir da combinação do termo frequência-frequência inversa do documento e sua similaridade no corpus do mesmo IRDR. Redes neurais artificiais são treinadas com esses vetores para reconhecer se novas ações judiciais estão relacionadas a um IRDR. A metodologia proposta obteve 93% de acurácia, 97% de precisão e 93% de recuperação nas simulações, o método pode agilizar o trabalho do Tribunal de Justiça, buscando solucionar os conflitos da sociedade o mais rápido possível. Embora o método possa ser utilizado em diversos cenários, as simulações foram realizadas em documentos em texto do Poder Judiciário.Universidade Federal de Goiás2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliação por "double-blind review"application/pdfhttps://revistas.ufg.br/revfd/article/view/7008610.5216/rfd.v45i2.70086Revista Facultad de Derecho UFG; Vol. 45 Núm. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFGMagazine de la faculté de droit UFG; Vol. 45 No. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFGRevista da Faculdade de Direito da UFG; v. 45 n. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG0101-7187reponame:Revista da Faculdade de Direito da UFG (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGporhttps://revistas.ufg.br/revfd/article/view/70086/37740Castro Júnior, Antônio Pires Wainer, Gabriel A.Calixto, Wesley P. info:eu-repo/semantics/openAccess2023-09-15T21:15:11Zoai:ojs.revistas.ufg.br:article/70086Revistahttps://revistas.ufg.br/revfdPUBhttps://revistas.ufg.br/revfd/oaimcvidotte@gmail.com || rfdufg@gmail.com2317-67330101-7187opendoar:2023-09-15T21:15:11Revista da Faculdade de Direito da UFG (Online) - Universidade Federal de Goiás (UFG)false
dc.title.none.fl_str_mv APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO E CLASSIFICAÇÃO AUTOMÁTICA DE INCIDENTE DE RESOLUÇÃO DE DEMANDA REPETITIVA NO TRIBUNAL DE JUSTIÇA DO BRASIL
title APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
spellingShingle APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
Castro Júnior, Antônio Pires
title_short APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
title_full APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
title_fullStr APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
title_full_unstemmed APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
title_sort APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE AUTOMATIC IDENTIFICATION AND CLASSIFICATION REPETITIVE DEMAND RESOLUTION INCIDENT IN THE BRAZILIAN COURT OF JUSTICE
author Castro Júnior, Antônio Pires
author_facet Castro Júnior, Antônio Pires
Wainer, Gabriel A.
Calixto, Wesley P.
author_role author
author2 Wainer, Gabriel A.
Calixto, Wesley P.
author2_role author
author
dc.contributor.author.fl_str_mv Castro Júnior, Antônio Pires
Wainer, Gabriel A.
Calixto, Wesley P.
description One of the areas of knowledge with several possibilities for applying artificial intelligence is Law. Recent changes in Brazilian legislation have facilitated the use of information technology resources to streamline the progress and judgment of cases, such as repetitive demand resolution incident (IRDRs). The aim of this paper is to develop and apply an AI method that can identify and relate new lawsuits with consolidated repetitive judgments (IRDRs). The datasets used in this research are judges' repetitive judgment documents, and consolidated in IRDRs. Court documents are transformed into weighted vectors. The construction of the weights in the vector is based on the co-occurrence of the terms, calculated from the combination of the term frequency-inverse document frequency and their similarity in the corpus of the same IRDR. Artificial neural networks are trained with these vectors to recognize whether new lawsuits are related to an IRDR. As the methodology obtained 93% accuracy, 97% precision, and 93% in recall in the simulations, the method can streamline the work of the Court of Justice, seeking to solve society’s conflicts as quickly as possible. Although the method can be used in several scenarios, the simulations were carried out in judicial documents.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliação por "double-blind review"
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufg.br/revfd/article/view/70086
10.5216/rfd.v45i2.70086
url https://revistas.ufg.br/revfd/article/view/70086
identifier_str_mv 10.5216/rfd.v45i2.70086
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufg.br/revfd/article/view/70086/37740
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv Revista Facultad de Derecho UFG; Vol. 45 Núm. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG
Magazine de la faculté de droit UFG; Vol. 45 No. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG
Revista da Faculdade de Direito da UFG; v. 45 n. 2 (2021): REVISTA DA FACULDADE DE DIREITO DA UFG
0101-7187
reponame:Revista da Faculdade de Direito da UFG (Online)
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Revista da Faculdade de Direito da UFG (Online)
collection Revista da Faculdade de Direito da UFG (Online)
repository.name.fl_str_mv Revista da Faculdade de Direito da UFG (Online) - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv mcvidotte@gmail.com || rfdufg@gmail.com
_version_ 1796798165783937024