Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses

Detalhes bibliográficos
Autor(a) principal: Adona, Vando Antônio
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000009tj0
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9522
Resumo: This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications.
id UFG-2_0defa140635ad1d99d6b9b9dd5cc13ca
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9522
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Melo, Jefferson Divino Gonçalves dehttp://lattes.cnpq.br/8296171010616435Gonçalves, Max Leandro Nobrehttp://lattes.cnpq.br/7841103869154032Melo, Jefferson Divino Gonçalves deGonçalves, Max Leandro NobrePrudente, Leandro da FonsecaPérez, Luis Roman LucambioAndreani, Robertohttp://lattes.cnpq.br/5115225898624770Adona, Vando Antônio2019-04-23T11:43:52Z2019-03-27ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9522ark:/38995/0013000009tj0This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications.Esta tese propõe e analisa algumas variantes do método dos multiplicadores das direções alternadas (ADMM) para resolver problemas de otimização convexa com restrição linear. Esta tese e dividida em três partes. Primeiro, estabelecemos iteração complexidade de um ADMM generalizado proximal. Essa variante ADMM, proposta por Bertsekas e Eckstein, introduz um parâmetro de relaxação no segundo subproblema do ADMM para melhorar seu desempenho computacional. Mostramos que, para uma determinada tolerância ρ>0, o ADMM generalizado proximal com α em (0, 2) fornece, em no máximo O(1/ρ^2) iterações, uma solução aproximada do sistema Lagrangiano associado ao problema de otimização considerado. E ainda demonstrado que, em no máximo O(1/ρ) iterações, uma solução aproximada do sistema Lagrangiano pode ser obtida por meio de uma sequência ergódica associada a sequência gerada pelo ADMM generalizado proximal com α em (0, 2]. Em segundo lugar, propomos e analisamos uma variante inexata do ADMM generalizado proximal acima mencionado. Nesta variante, o primeiro subproblema e aproximadamente resolvido usando uma condição de erro relativo, enquanto o segundo e considerado fácil de resolver. É importante mencionar que, em muitas aplicações do ADMM, um dos subproblemas tem uma solução em forma fechada; por exemplo, problemas de otimização convexos compostos l_1-regularizados. Mostramos que o método proposto possui iteração complexidade semelhantes à sua versão exata. Terceiro, desenvolvemos um ADMM proximal inexato cujo primeiro subproblema é resolvido inexatamente usando um critério de erro relativo aproximado semelhante ao ADMM inexato generalizado proximal acima mencionado. Os limites de iteração complexidade pontual e ergódico para o método proposto são estabelecidos. Nossa abordagem consiste em interpretar essas variantes do ADMM como uma instância de um estrutura híbrida proximal extragradiente com algumas propriedades especiais. Finalmente, a fim de mostrar a aplicabilidade e vantagem das variantes inexatas do ADMM propostas aqui, apresentamos alguns experimentos numéricos realizados em um cenário de de problemas derivados de aplicações da vida real.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-04-22T19:44:18Z No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-23T11:43:52Z (GMT) No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-23T11:43:52Z (GMT). No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMétodo dos multiplicadores das direções alternadasPrograma convexoMétodo extragradiente híbridoCritério de erro relativoIteração complexidade pontualIteração complexidade ergódicaAlternating direction method of multipliersConvex programHybrid extragradient methodRelative error criterionPointwise iteration-complexityErgodic iteration-complexityCIENCIAS EXATAS E DA TERRA::MATEMATICAInexact variants of the alternating direction method of multipliers and their iteration-complexity analysesVariantes inexatas do método dos multiplicadores das direções alternadas e sua analise de iteração complexidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/35a33ce8-11d8-49e6-a213-e6f2f587aebe/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/7d0c2f74-27f9-4c08-b2ea-93981fccb573/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/0dda7b36-16bd-40c5-b6a7-6078804c5795/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/3c65da1a-c6a5-4921-af08-a0580708dfab/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Vando Antônio Adona - 2019.pdfTese - Vando Antônio Adona - 2019.pdfapplication/pdf5160326http://repositorio.bc.ufg.br/tede/bitstreams/bf2ab2af-e04a-4207-9583-e3e42b0096eb/download351610e1652d929b881b6d5d0ac9c40fMD55tede/95222019-04-23 08:43:52.925http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9522http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-23T11:43:52Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
dc.title.alternative.por.fl_str_mv Variantes inexatas do método dos multiplicadores das direções alternadas e sua analise de iteração complexidade
title Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
spellingShingle Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
Adona, Vando Antônio
Método dos multiplicadores das direções alternadas
Programa convexo
Método extragradiente híbrido
Critério de erro relativo
Iteração complexidade pontual
Iteração complexidade ergódica
Alternating direction method of multipliers
Convex program
Hybrid extragradient method
Relative error criterion
Pointwise iteration-complexity
Ergodic iteration-complexity
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
title_full Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
title_fullStr Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
title_full_unstemmed Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
title_sort Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
author Adona, Vando Antônio
author_facet Adona, Vando Antônio
author_role author
dc.contributor.advisor1.fl_str_mv Melo, Jefferson Divino Gonçalves de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8296171010616435
dc.contributor.advisor-co1.fl_str_mv Gonçalves, Max Leandro Nobre
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7841103869154032
dc.contributor.referee1.fl_str_mv Melo, Jefferson Divino Gonçalves de
dc.contributor.referee2.fl_str_mv Gonçalves, Max Leandro Nobre
dc.contributor.referee3.fl_str_mv Prudente, Leandro da Fonseca
dc.contributor.referee4.fl_str_mv Pérez, Luis Roman Lucambio
dc.contributor.referee5.fl_str_mv Andreani, Roberto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5115225898624770
dc.contributor.author.fl_str_mv Adona, Vando Antônio
contributor_str_mv Melo, Jefferson Divino Gonçalves de
Gonçalves, Max Leandro Nobre
Melo, Jefferson Divino Gonçalves de
Gonçalves, Max Leandro Nobre
Prudente, Leandro da Fonseca
Pérez, Luis Roman Lucambio
Andreani, Roberto
dc.subject.por.fl_str_mv Método dos multiplicadores das direções alternadas
Programa convexo
Método extragradiente híbrido
Critério de erro relativo
Iteração complexidade pontual
Iteração complexidade ergódica
topic Método dos multiplicadores das direções alternadas
Programa convexo
Método extragradiente híbrido
Critério de erro relativo
Iteração complexidade pontual
Iteração complexidade ergódica
Alternating direction method of multipliers
Convex program
Hybrid extragradient method
Relative error criterion
Pointwise iteration-complexity
Ergodic iteration-complexity
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Alternating direction method of multipliers
Convex program
Hybrid extragradient method
Relative error criterion
Pointwise iteration-complexity
Ergodic iteration-complexity
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-23T11:43:52Z
dc.date.issued.fl_str_mv 2019-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9522
dc.identifier.dark.fl_str_mv ark:/38995/0013000009tj0
identifier_str_mv ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/0013000009tj0
url http://repositorio.bc.ufg.br/tede/handle/tede/9522
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/35a33ce8-11d8-49e6-a213-e6f2f587aebe/download
http://repositorio.bc.ufg.br/tede/bitstreams/7d0c2f74-27f9-4c08-b2ea-93981fccb573/download
http://repositorio.bc.ufg.br/tede/bitstreams/0dda7b36-16bd-40c5-b6a7-6078804c5795/download
http://repositorio.bc.ufg.br/tede/bitstreams/3c65da1a-c6a5-4921-af08-a0580708dfab/download
http://repositorio.bc.ufg.br/tede/bitstreams/bf2ab2af-e04a-4207-9583-e3e42b0096eb/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
351610e1652d929b881b6d5d0ac9c40f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172614938689536