Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000009tj0 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9522 |
Resumo: | This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications. |
id |
UFG-2_0defa140635ad1d99d6b9b9dd5cc13ca |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9522 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Melo, Jefferson Divino Gonçalves dehttp://lattes.cnpq.br/8296171010616435Gonçalves, Max Leandro Nobrehttp://lattes.cnpq.br/7841103869154032Melo, Jefferson Divino Gonçalves deGonçalves, Max Leandro NobrePrudente, Leandro da FonsecaPérez, Luis Roman LucambioAndreani, Robertohttp://lattes.cnpq.br/5115225898624770Adona, Vando Antônio2019-04-23T11:43:52Z2019-03-27ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9522ark:/38995/0013000009tj0This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications.Esta tese propõe e analisa algumas variantes do método dos multiplicadores das direções alternadas (ADMM) para resolver problemas de otimização convexa com restrição linear. Esta tese e dividida em três partes. Primeiro, estabelecemos iteração complexidade de um ADMM generalizado proximal. Essa variante ADMM, proposta por Bertsekas e Eckstein, introduz um parâmetro de relaxação no segundo subproblema do ADMM para melhorar seu desempenho computacional. Mostramos que, para uma determinada tolerância ρ>0, o ADMM generalizado proximal com α em (0, 2) fornece, em no máximo O(1/ρ^2) iterações, uma solução aproximada do sistema Lagrangiano associado ao problema de otimização considerado. E ainda demonstrado que, em no máximo O(1/ρ) iterações, uma solução aproximada do sistema Lagrangiano pode ser obtida por meio de uma sequência ergódica associada a sequência gerada pelo ADMM generalizado proximal com α em (0, 2]. Em segundo lugar, propomos e analisamos uma variante inexata do ADMM generalizado proximal acima mencionado. Nesta variante, o primeiro subproblema e aproximadamente resolvido usando uma condição de erro relativo, enquanto o segundo e considerado fácil de resolver. É importante mencionar que, em muitas aplicações do ADMM, um dos subproblemas tem uma solução em forma fechada; por exemplo, problemas de otimização convexos compostos l_1-regularizados. Mostramos que o método proposto possui iteração complexidade semelhantes à sua versão exata. Terceiro, desenvolvemos um ADMM proximal inexato cujo primeiro subproblema é resolvido inexatamente usando um critério de erro relativo aproximado semelhante ao ADMM inexato generalizado proximal acima mencionado. Os limites de iteração complexidade pontual e ergódico para o método proposto são estabelecidos. Nossa abordagem consiste em interpretar essas variantes do ADMM como uma instância de um estrutura híbrida proximal extragradiente com algumas propriedades especiais. Finalmente, a fim de mostrar a aplicabilidade e vantagem das variantes inexatas do ADMM propostas aqui, apresentamos alguns experimentos numéricos realizados em um cenário de de problemas derivados de aplicações da vida real.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-04-22T19:44:18Z No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-23T11:43:52Z (GMT) No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-23T11:43:52Z (GMT). No. of bitstreams: 2 Tese - Vando Antônio Adona - 2019.pdf: 5160326 bytes, checksum: 351610e1652d929b881b6d5d0ac9c40f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMétodo dos multiplicadores das direções alternadasPrograma convexoMétodo extragradiente híbridoCritério de erro relativoIteração complexidade pontualIteração complexidade ergódicaAlternating direction method of multipliersConvex programHybrid extragradient methodRelative error criterionPointwise iteration-complexityErgodic iteration-complexityCIENCIAS EXATAS E DA TERRA::MATEMATICAInexact variants of the alternating direction method of multipliers and their iteration-complexity analysesVariantes inexatas do método dos multiplicadores das direções alternadas e sua analise de iteração complexidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/35a33ce8-11d8-49e6-a213-e6f2f587aebe/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/7d0c2f74-27f9-4c08-b2ea-93981fccb573/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/0dda7b36-16bd-40c5-b6a7-6078804c5795/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/3c65da1a-c6a5-4921-af08-a0580708dfab/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Vando Antônio Adona - 2019.pdfTese - Vando Antônio Adona - 2019.pdfapplication/pdf5160326http://repositorio.bc.ufg.br/tede/bitstreams/bf2ab2af-e04a-4207-9583-e3e42b0096eb/download351610e1652d929b881b6d5d0ac9c40fMD55tede/95222019-04-23 08:43:52.925http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9522http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-23T11:43:52Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
dc.title.alternative.por.fl_str_mv |
Variantes inexatas do método dos multiplicadores das direções alternadas e sua analise de iteração complexidade |
title |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
spellingShingle |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses Adona, Vando Antônio Método dos multiplicadores das direções alternadas Programa convexo Método extragradiente híbrido Critério de erro relativo Iteração complexidade pontual Iteração complexidade ergódica Alternating direction method of multipliers Convex program Hybrid extragradient method Relative error criterion Pointwise iteration-complexity Ergodic iteration-complexity CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
title_full |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
title_fullStr |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
title_full_unstemmed |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
title_sort |
Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses |
author |
Adona, Vando Antônio |
author_facet |
Adona, Vando Antônio |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Melo, Jefferson Divino Gonçalves de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8296171010616435 |
dc.contributor.advisor-co1.fl_str_mv |
Gonçalves, Max Leandro Nobre |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7841103869154032 |
dc.contributor.referee1.fl_str_mv |
Melo, Jefferson Divino Gonçalves de |
dc.contributor.referee2.fl_str_mv |
Gonçalves, Max Leandro Nobre |
dc.contributor.referee3.fl_str_mv |
Prudente, Leandro da Fonseca |
dc.contributor.referee4.fl_str_mv |
Pérez, Luis Roman Lucambio |
dc.contributor.referee5.fl_str_mv |
Andreani, Roberto |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5115225898624770 |
dc.contributor.author.fl_str_mv |
Adona, Vando Antônio |
contributor_str_mv |
Melo, Jefferson Divino Gonçalves de Gonçalves, Max Leandro Nobre Melo, Jefferson Divino Gonçalves de Gonçalves, Max Leandro Nobre Prudente, Leandro da Fonseca Pérez, Luis Roman Lucambio Andreani, Roberto |
dc.subject.por.fl_str_mv |
Método dos multiplicadores das direções alternadas Programa convexo Método extragradiente híbrido Critério de erro relativo Iteração complexidade pontual Iteração complexidade ergódica |
topic |
Método dos multiplicadores das direções alternadas Programa convexo Método extragradiente híbrido Critério de erro relativo Iteração complexidade pontual Iteração complexidade ergódica Alternating direction method of multipliers Convex program Hybrid extragradient method Relative error criterion Pointwise iteration-complexity Ergodic iteration-complexity CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Alternating direction method of multipliers Convex program Hybrid extragradient method Relative error criterion Pointwise iteration-complexity Ergodic iteration-complexity |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This thesis proposes and analyzes some variants of the alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. This thesis is divided into three parts. First, we establish the iteration-complexity of a proximal generalized ADMM. This ADMM variant, proposed by Bertsekas and Eckstein, introduces a relaxation parameter into the second ADMM subproblem in order to improve its computational performance. We show that, for a given tolerance ρ>0, the proximal generalized ADMM with α in (0, 2) provides, in at most O(1/ρ^2) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most O(1/ρ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the proximal generalized ADMM with α in (0, 2]. Second, we propose and analyze an inexact variant of the aforementioned proximal generalized ADMM. In this variant, the rst subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. It is important to mention that in many ADMM applications one of the subproblems has a closed-form solution; for instance, l_1-regularized convex composite optimization problems. We show that the proposed method possesses iteration-complexity bounds similar to its exact version. Third, we develop an inexact proximal ADMM whose rst subproblem is inexactly solved using an approximate relative error criterion similar to the aforementioned inexact proximal generalized ADMM. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. Our approach consists of interpreting these ADMM variants as an instance of a hybrid proximal extragradient framework with some special properties. Finally, in order to show the applicability and advantage of the inexact ADMM variants proposed here, we present some numerical experiments performed on a setting of problems derived from real-life applications. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-04-23T11:43:52Z |
dc.date.issued.fl_str_mv |
2019-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9522 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000009tj0 |
identifier_str_mv |
ADONA, V. A. Inexact variants of the alternating direction method of multipliers and their iteration-complexity analyses. 2019. 92 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000009tj0 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9522 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/35a33ce8-11d8-49e6-a213-e6f2f587aebe/download http://repositorio.bc.ufg.br/tede/bitstreams/7d0c2f74-27f9-4c08-b2ea-93981fccb573/download http://repositorio.bc.ufg.br/tede/bitstreams/0dda7b36-16bd-40c5-b6a7-6078804c5795/download http://repositorio.bc.ufg.br/tede/bitstreams/3c65da1a-c6a5-4921-af08-a0580708dfab/download http://repositorio.bc.ufg.br/tede/bitstreams/bf2ab2af-e04a-4207-9583-e3e42b0096eb/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 351610e1652d929b881b6d5d0ac9c40f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172614938689536 |