As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000063m8 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11384 |
Resumo: | This dissertation has as its aim the philosophical presentation and discussion of the nature of the intuitionist continuum of Luitzen Egbertus Jan Brouwer (1881-1966) and of its philosophical bases. This conception of the nature of the intuitionist continuum led to the development of the notion of “real numbers” distinct from classical analysis. Such a notion of “real numbers” does not accept the principle of excluded middle as universally valid and, as a result, it would not be possible to accept, for example, the law of trichotomy. The refusal of the principle of excluded middle does not arise from vacuum, and it is not the central focus of mathematical intuitionism. It is, as one would put it, a consequence of the conception of intuitionist “continuum”. The notions of “continuum” and “mathematical entity” are, as one would put it, the main focus of Brouwer’s analysis. From his point of view, the continuum is not a collection of absolutely individualized already given discrete points, which could in some way be extracted and used. The mathematical points in intuitionism are, so to speak, mentally constructed as sequences of infinitely converging intervals. Thus, no interval has an absolutely segmented, intrinsically formed, and/or absolutely individualized “limit”. For any “stage” of the interval there is always a space of infinite possibilities of other intervals. Hence there would be no point of infinitely distant cumulation of the intervals that could be found by the mathematician, as if the continuum were mappable such as a city is mappable by a geographer. From this point of view, the classical perspective would need to subscribe, even if not intentionally, to the existence of absolutely individualized discrete points in order to be able to make some kind of sense of its analysis of real numbers, of calculus, in short, of classical mathematics. This intuitionist notions of “continuum” and “real numbers” qua “infinitely converging intervals” became possible because of the type of philosophical bases that precede them. Such bases were developed from two fundamental acts that are understood in the context of an idealistic philosophy of Kantian inspiration. Thus, such acts are comprehended from a “Neo-Kantian” framework, in some sense or, more accurately, to use Brouwer’s expression, from an “up-to-date Kantism”. They are: (i) the act of mental recognition of the distinction between mathematical entities and linguistic entities and (ii) the act of mental recognition of the possibility of new mathematical entities. Both acts are interconnected and presuppose the same bases. In fact, the first act is connected with the radically intuitive aspect of the mental construction of mathematical entities, and the second act brings to light particularly important notes of the nature of the intuitionist continuum through the possibility of always emerging new mathematical entities, i.e., the continuum is a type of entity that is never determinable, it does not ever have an absolute form determined by a collection of discrete points that are absolutely individualizable. Therefore, the continuum is definitely indeterminate. In other words, the second act acknowledges that mathematical entities are intensionally “expansible” through the notion of “choice sequences”. Thus, these sequences are fundamental to the intuitionist continuum. In this dissertation, we present these philosophical bases in the first chapters and apply them to some specific mathematical contexts in the last chapters so as to try to elucidate the philosophical and mathematical nature of the intuitionist continuum and/or real numbers through the explicitness of properties of cohesion, viscosity, and infinitely converging intervals. |
id |
UFG-2_10a80176fb7f20c62c958b6cf6a9757b |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11384 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Porto, André da Silvahttp://lattes.cnpq.br/3598537464598916Pereira, Luiz Carlos Pinheiro DiasRodrigues Filho, Abílio AzambujaRezende , Cristiano Novaes deKlotz, Hans ChristianPorto, André da Silvahttp://lattes.cnpq.br/1415546040071273Oliveira, Paulo Júnio de2021-05-19T14:45:43Z2021-05-19T14:45:43Z2021-04-15OLIVEIRA, P. J. As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista. 2021. 120 f. Tese (Doutorado em Filosofia) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11384ark:/38995/00130000063m8This dissertation has as its aim the philosophical presentation and discussion of the nature of the intuitionist continuum of Luitzen Egbertus Jan Brouwer (1881-1966) and of its philosophical bases. This conception of the nature of the intuitionist continuum led to the development of the notion of “real numbers” distinct from classical analysis. Such a notion of “real numbers” does not accept the principle of excluded middle as universally valid and, as a result, it would not be possible to accept, for example, the law of trichotomy. The refusal of the principle of excluded middle does not arise from vacuum, and it is not the central focus of mathematical intuitionism. It is, as one would put it, a consequence of the conception of intuitionist “continuum”. The notions of “continuum” and “mathematical entity” are, as one would put it, the main focus of Brouwer’s analysis. From his point of view, the continuum is not a collection of absolutely individualized already given discrete points, which could in some way be extracted and used. The mathematical points in intuitionism are, so to speak, mentally constructed as sequences of infinitely converging intervals. Thus, no interval has an absolutely segmented, intrinsically formed, and/or absolutely individualized “limit”. For any “stage” of the interval there is always a space of infinite possibilities of other intervals. Hence there would be no point of infinitely distant cumulation of the intervals that could be found by the mathematician, as if the continuum were mappable such as a city is mappable by a geographer. From this point of view, the classical perspective would need to subscribe, even if not intentionally, to the existence of absolutely individualized discrete points in order to be able to make some kind of sense of its analysis of real numbers, of calculus, in short, of classical mathematics. This intuitionist notions of “continuum” and “real numbers” qua “infinitely converging intervals” became possible because of the type of philosophical bases that precede them. Such bases were developed from two fundamental acts that are understood in the context of an idealistic philosophy of Kantian inspiration. Thus, such acts are comprehended from a “Neo-Kantian” framework, in some sense or, more accurately, to use Brouwer’s expression, from an “up-to-date Kantism”. They are: (i) the act of mental recognition of the distinction between mathematical entities and linguistic entities and (ii) the act of mental recognition of the possibility of new mathematical entities. Both acts are interconnected and presuppose the same bases. In fact, the first act is connected with the radically intuitive aspect of the mental construction of mathematical entities, and the second act brings to light particularly important notes of the nature of the intuitionist continuum through the possibility of always emerging new mathematical entities, i.e., the continuum is a type of entity that is never determinable, it does not ever have an absolute form determined by a collection of discrete points that are absolutely individualizable. Therefore, the continuum is definitely indeterminate. In other words, the second act acknowledges that mathematical entities are intensionally “expansible” through the notion of “choice sequences”. Thus, these sequences are fundamental to the intuitionist continuum. In this dissertation, we present these philosophical bases in the first chapters and apply them to some specific mathematical contexts in the last chapters so as to try to elucidate the philosophical and mathematical nature of the intuitionist continuum and/or real numbers through the explicitness of properties of cohesion, viscosity, and infinitely converging intervals.A investigação desta tese tem como objetivo uma apresentação e uma discussão filosófica da natureza do continuum intuicionista de Luitzen Egbertus Jan Brouwer (1881-1966) e de suas bases filosóficas. Essa concepção da natureza do continuum intuicionista levou ao desenvolvimento de uma noção de “números reais” distinta da análise clássica. Tal noção de “números reais” não aceita como universalmente válida a lei do terceiro excluído e, em decorrência disso, não seria possível aceitar, por exemplo, a lei da tricotomia. Essa recusa do terceiro excluído não nasce no vácuo e não é o foco central do intuicionismo matemático. Ela é, por assim dizer, uma consequência da concepção de “continuum” intuicionista. Já as noções de “continuum” e de “entidade matemática” são, digamos, os focos principais da análise de Brouwer. Do ponto de vista dele, o continuum não é uma coleção de pontos discretos absolutamente individualizados já dados, os quais poderiam, de alguma forma, ser pinçados e utilizados. Os pontos matemáticos, no intuicionismo, são, por assim dizer, construídos mentalmente como sequências de intervalos infinitamente convergentes entre si. Por conseguinte, nenhum intervalo tem um “limite” absolutamente segmentado, intrinsecamente formado e/ou absolutamente individualizado. Para qualquer “estágio” do intervalo, há sempre um espaço de possibilidades infinitas de outros intervalos. Assim, não existiria um ponto de cumulação infinitamente distante dos intervalos que poderia ser encontrado pelo matemático, como se o continuum fosse mapeável como uma cidade é mapeável por um geógrafo. Desse ponto de vista, a perspectiva clássica precisaria subscrever, mesmo que não intencionalmente, à existência de pontos discretos absolutamente individualizados para poder fazer algum tipo de sentido de sua análise dos números reais, do cálculo, em síntese, da matemática clássica. Essas noções intuicionistas de “continuum” e de “números reais” qua “intervalos infinitamente convergentes entre si” se tornaram possíveis por causa do tipo de bases filosóficas que as antecede. Tais bases foram desenvolvidas através de dois atos fundamentais, que são compreendidos em um contexto de uma filosofia idealista de inspiração kantiana. Assim, tais atos são compreendidos a partir de um quadro “neokantiano”, em algum sentido ou, para utilizar a expressão de Brouwer, de um “kantismo atualizado”. Eles são: (i) o ato de reconhecimento mental da distinção entre entidades matemáticas e entidades linguísticas e (ii) o ato de reconhecimento mental da possibilidade de novas entidades matemáticas. Ambos os atos estão interconectados e pressupõem as mesmas bases. De fato, o primeiro ato está conectado ao aspecto radicalmente intuitivo da construção mental das entidades matemáticas e o segundo ato traz à tona notas muito importantes da natureza do continuum intuicionista através da possibilidade de sempre emergirem novas entidades matemáticas, i.e., o continuum é um tipo de entidade que nunca é determinável, nunca tem uma forma absoluta determinada por uma coleção de pontos discretos absolutamente individualizáveis. Desta maneira, o continuum é em definitivo indeterminado. Em outras palavras, o segundo ato reconhece que entidades matemáticas são “expansíveis” intensionalmente através da noção de “sequências de escolha”. Desse modo, essas sequências são fundamentais para o continuum intuicionista. Por isso, nesta tese apresentamos essas bases filosóficas nos primeiros capítulos e as aplicamos nos últimos capítulos em alguns contextos matemáticos específicos para tentar elucidar a natureza filosófica e matemática do continuum intuicionista e/ou dos números reais através da explicitação das propriedades da coesão, da viscosidade e dos intervalos infinitamente convergentes.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2021-05-18T12:01:22Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Paulo Júnio de Oliveira - 2021.pdf: 1750969 bytes, checksum: 1991f79895758a8eea5b11b7198b49bc (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-05-19T14:45:43Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Paulo Júnio de Oliveira - 2021.pdf: 1750969 bytes, checksum: 1991f79895758a8eea5b11b7198b49bc (MD5)Made available in DSpace on 2021-05-19T14:45:43Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Paulo Júnio de Oliveira - 2021.pdf: 1750969 bytes, checksum: 1991f79895758a8eea5b11b7198b49bc (MD5) Previous issue date: 2021-04-15Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Filosofia (FAFIL)UFGBrasilFaculdade de Filosofia - FAFIL (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoria intuicionista do continuumIntuicionismo matemáticoIdealismo neokantianoBrouwerIntuitionist continuum theoryMathematical intuitionismNeo-Kantian idealismBrouwerCIENCIAS HUMANAS::FILOSOFIAAs bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionistaThe bases of Brouwer's mathematical intuitionism the nature of the intuitionist continuuminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis55500500500500151961reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/dbaa605d-0291-48e6-89ca-2aa79098a3cb/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/be2bc592-b68f-4358-9053-982662927b2b/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Paulo Júnio de Oliveira - 2021.pdfTese - Paulo Júnio de Oliveira - 2021.pdfapplication/pdf1750969http://repositorio.bc.ufg.br/tede/bitstreams/f886de36-5c3f-4c14-b6ad-add9b1e09c9e/download1991f79895758a8eea5b11b7198b49bcMD53tede/113842021-05-25 11:00:48.452http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11384http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-05-25T14:00:48Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
dc.title.alternative.eng.fl_str_mv |
The bases of Brouwer's mathematical intuitionism the nature of the intuitionist continuum |
title |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
spellingShingle |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista Oliveira, Paulo Júnio de Teoria intuicionista do continuum Intuicionismo matemático Idealismo neokantiano Brouwer Intuitionist continuum theory Mathematical intuitionism Neo-Kantian idealism Brouwer CIENCIAS HUMANAS::FILOSOFIA |
title_short |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
title_full |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
title_fullStr |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
title_full_unstemmed |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
title_sort |
As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista |
author |
Oliveira, Paulo Júnio de |
author_facet |
Oliveira, Paulo Júnio de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Porto, André da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3598537464598916 |
dc.contributor.referee1.fl_str_mv |
Pereira, Luiz Carlos Pinheiro Dias |
dc.contributor.referee2.fl_str_mv |
Rodrigues Filho, Abílio Azambuja |
dc.contributor.referee3.fl_str_mv |
Rezende , Cristiano Novaes de |
dc.contributor.referee4.fl_str_mv |
Klotz, Hans Christian |
dc.contributor.referee5.fl_str_mv |
Porto, André da Silva |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1415546040071273 |
dc.contributor.author.fl_str_mv |
Oliveira, Paulo Júnio de |
contributor_str_mv |
Porto, André da Silva Pereira, Luiz Carlos Pinheiro Dias Rodrigues Filho, Abílio Azambuja Rezende , Cristiano Novaes de Klotz, Hans Christian Porto, André da Silva |
dc.subject.por.fl_str_mv |
Teoria intuicionista do continuum Intuicionismo matemático Idealismo neokantiano Brouwer |
topic |
Teoria intuicionista do continuum Intuicionismo matemático Idealismo neokantiano Brouwer Intuitionist continuum theory Mathematical intuitionism Neo-Kantian idealism Brouwer CIENCIAS HUMANAS::FILOSOFIA |
dc.subject.eng.fl_str_mv |
Intuitionist continuum theory Mathematical intuitionism Neo-Kantian idealism Brouwer |
dc.subject.cnpq.fl_str_mv |
CIENCIAS HUMANAS::FILOSOFIA |
description |
This dissertation has as its aim the philosophical presentation and discussion of the nature of the intuitionist continuum of Luitzen Egbertus Jan Brouwer (1881-1966) and of its philosophical bases. This conception of the nature of the intuitionist continuum led to the development of the notion of “real numbers” distinct from classical analysis. Such a notion of “real numbers” does not accept the principle of excluded middle as universally valid and, as a result, it would not be possible to accept, for example, the law of trichotomy. The refusal of the principle of excluded middle does not arise from vacuum, and it is not the central focus of mathematical intuitionism. It is, as one would put it, a consequence of the conception of intuitionist “continuum”. The notions of “continuum” and “mathematical entity” are, as one would put it, the main focus of Brouwer’s analysis. From his point of view, the continuum is not a collection of absolutely individualized already given discrete points, which could in some way be extracted and used. The mathematical points in intuitionism are, so to speak, mentally constructed as sequences of infinitely converging intervals. Thus, no interval has an absolutely segmented, intrinsically formed, and/or absolutely individualized “limit”. For any “stage” of the interval there is always a space of infinite possibilities of other intervals. Hence there would be no point of infinitely distant cumulation of the intervals that could be found by the mathematician, as if the continuum were mappable such as a city is mappable by a geographer. From this point of view, the classical perspective would need to subscribe, even if not intentionally, to the existence of absolutely individualized discrete points in order to be able to make some kind of sense of its analysis of real numbers, of calculus, in short, of classical mathematics. This intuitionist notions of “continuum” and “real numbers” qua “infinitely converging intervals” became possible because of the type of philosophical bases that precede them. Such bases were developed from two fundamental acts that are understood in the context of an idealistic philosophy of Kantian inspiration. Thus, such acts are comprehended from a “Neo-Kantian” framework, in some sense or, more accurately, to use Brouwer’s expression, from an “up-to-date Kantism”. They are: (i) the act of mental recognition of the distinction between mathematical entities and linguistic entities and (ii) the act of mental recognition of the possibility of new mathematical entities. Both acts are interconnected and presuppose the same bases. In fact, the first act is connected with the radically intuitive aspect of the mental construction of mathematical entities, and the second act brings to light particularly important notes of the nature of the intuitionist continuum through the possibility of always emerging new mathematical entities, i.e., the continuum is a type of entity that is never determinable, it does not ever have an absolute form determined by a collection of discrete points that are absolutely individualizable. Therefore, the continuum is definitely indeterminate. In other words, the second act acknowledges that mathematical entities are intensionally “expansible” through the notion of “choice sequences”. Thus, these sequences are fundamental to the intuitionist continuum. In this dissertation, we present these philosophical bases in the first chapters and apply them to some specific mathematical contexts in the last chapters so as to try to elucidate the philosophical and mathematical nature of the intuitionist continuum and/or real numbers through the explicitness of properties of cohesion, viscosity, and infinitely converging intervals. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-05-19T14:45:43Z |
dc.date.available.fl_str_mv |
2021-05-19T14:45:43Z |
dc.date.issued.fl_str_mv |
2021-04-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, P. J. As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista. 2021. 120 f. Tese (Doutorado em Filosofia) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11384 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000063m8 |
identifier_str_mv |
OLIVEIRA, P. J. As bases do intuicionismo matemático de Brouwer a natureza do continuum intuicionista. 2021. 120 f. Tese (Doutorado em Filosofia) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/00130000063m8 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11384 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
55 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
15 |
dc.relation.cnpq.fl_str_mv |
196 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Filosofia (FAFIL) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Filosofia - FAFIL (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/dbaa605d-0291-48e6-89ca-2aa79098a3cb/download http://repositorio.bc.ufg.br/tede/bitstreams/be2bc592-b68f-4358-9053-982662927b2b/download http://repositorio.bc.ufg.br/tede/bitstreams/f886de36-5c3f-4c14-b6ad-add9b1e09c9e/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 1991f79895758a8eea5b11b7198b49bc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172574565367808 |