Controle de qualidade de águas potáveis utilizando análise multivariada de imagens
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000460r |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/5558 |
Resumo: | New digital image based-analytical methodologies are proposed to measure pH, alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron of potable water samples. Multivariate image analysis and partial leastsquares regression were applied to BMP digital images acquired from a CCD-scanner. RGB, HIS, XYZ and YCbCr color spaces and 300 dpi images of 200 μL water samples were employed. This micro volume per sample yielded micro volumes of analytical waste per sample (400.0 μL). PLS root mean square error of prediction (RMSEP) for pH analyses was 0.16. RMSEP values for alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron were 0.03, 1.20, 2.01, 0.07, 0.04, and 0.06 mg L-1, respectively. Analytical figures of merit were computed for all PLS proposed methods. Mean relative errors ranging from 0.20% to 1.33 were found. The proposed methods were validated against standard analytical procedures for water quality control. There were no statistical differences between mean PLS value and the one found using the respective standard procedure (ttest, = 0.05). Precision was found statistically equivalent for pH, alkalinity, chloride, fluoride, and total iron when compared to the related reference method (Ftest, = 0.05). Therefore, the new PLS analytical methods proposed for water control quality can be employed as an alternative to standard methods. |
id |
UFG-2_149b13bfb0fc93159607ec37fec9a268 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/5558 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Oliveira, Anselmo Elcana dehttp://lattes.cnpq.br/0369339073291948Oliveira, Sérgio Botelho dehttp://lattes.cnpq.br/3447406257464639Oliveira, Anselmo Elcana deCoelho, Clarimar JoséSoares, Anderson da SilvaChaves, Andréa RodriguesColtro, Wendell Karlos Tomazellihttp://lattes.cnpq.br/2019926629635992Damasceno, Deangelis2016-05-13T11:27:33Z2015-12-15DAMASCENO, D. Controle de qualidade de águas potáveis utilizando análise multivariada de imagens. 2015. 150 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/5558ark:/38995/001300000460rNew digital image based-analytical methodologies are proposed to measure pH, alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron of potable water samples. Multivariate image analysis and partial leastsquares regression were applied to BMP digital images acquired from a CCD-scanner. RGB, HIS, XYZ and YCbCr color spaces and 300 dpi images of 200 μL water samples were employed. This micro volume per sample yielded micro volumes of analytical waste per sample (400.0 μL). PLS root mean square error of prediction (RMSEP) for pH analyses was 0.16. RMSEP values for alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron were 0.03, 1.20, 2.01, 0.07, 0.04, and 0.06 mg L-1, respectively. Analytical figures of merit were computed for all PLS proposed methods. Mean relative errors ranging from 0.20% to 1.33 were found. The proposed methods were validated against standard analytical procedures for water quality control. There were no statistical differences between mean PLS value and the one found using the respective standard procedure (ttest, = 0.05). Precision was found statistically equivalent for pH, alkalinity, chloride, fluoride, and total iron when compared to the related reference method (Ftest, = 0.05). Therefore, the new PLS analytical methods proposed for water control quality can be employed as an alternative to standard methods.Novas metodologias analíticas são propostas nesta Tese para a determinação físicoquímica de pH, Alcalinidade, Dureza Total, Dureza Cálcio, Dureza Magnésio, Cloreto, Fluoreto e Ferro Total de águas potáveis utilizando Análise Multivariada de Imagens (MIA) associada à Regressão Multivariada por Mínimos Quadrados Parciais (PLS). Imagens digitais de amostras obtidas por um scanner de mesa foram empregadas para construir modelos de calibração multivariada. Amostras foram preparadas em laboratório para cada parâmetro investigado. Os modelos PLS foram obtidos de imagens digitais nos espaços RGB, HSI, XYZ e YCbCr, com 300 dpi de resolução e formato de arquivo BMP. As análises foram realizadas em micro-volumes amostrais, sendo necessários 200,0 μL de amostras por análise. O modelo PLS para determinação do pH forneceu RMSEP = 0,16. Já para Alcalinidade, Dureza Total, Dureza Cálcio, Dureza Magnésio, Cloreto, Fluoreto e Ferro Total os valores de RMSEP foram iguais a 0,03, 1,20, 2,01, 0,07, 0,04 e 0,06 mg L-1, respectivamente. Todos os modelos foram avaliados utilizando Figuras de Mérito (FOM) buscando contemplar os parâmetros nacionais de validação de novos métodos analíticos. Para o modelo PLS desenvolvido para determinação de pH, apresentou média dos erros relativos obtidos da diferença entre os valores previstos e os valores de referência, sendo igual a 0,20%. Para Alcalinidade, Dureza Total, Dureza Cálcio e Dureza Magnésio, foram encontrados valores das médias dos erros relativos iguais a 0,85, 9,46 e 9,44%, respectivamente. Já os modelos desenvolvidos para Cloretos, Fluoretos e Ferro, apresentaram valores menores, com médias dos erros relativos iguais a 1,01, 5,15 e 1,33%. Os modelos desenvolvidos foram validados utilizando amostras reais, além de comparados com métodos de referência através de testes de exatidão e de precisão. Todos os métodos desenvolvidos apresentaram exatidão estatisticamente equivalentes aos valores obtidos pelos métodos convencionais (tcal < tcrítico, = 0,05). Todos os modelos desenvolvidos, com exceção dos modelos de Dureza Total, Dureza Cálcio e Dureza Magnésio, apresentaram previsão estatisticamente equivalentes aos métodos convencionais (Fcal > Fcrítico, = 0,05). Dessa forma, as metodologias analíticas desenvolvidas nesta Tese são alternativas aos métodos analíticos convencionais, apresentando vantagens como menor quantidade de amostras (200,0 μL), menor quantidade de reagentes (40,0 μL), menor quantidade de solução indicadora (4,0 μL), menor quantidade de resíduos por amostra (400,0 μL), além da mobilidade dos métodos, não necessitando de laboratórios específicos para análise das amostras.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-05-12T18:18:17Z No. of bitstreams: 2 Tese - Deangelis Damasceno - 2016.pdf: 4602737 bytes, checksum: 00c0eed1514b7ff11167a9271ed725e9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-13T11:27:33Z (GMT) No. of bitstreams: 2 Tese - Deangelis Damasceno - 2016.pdf: 4602737 bytes, checksum: 00c0eed1514b7ff11167a9271ed725e9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2016-05-13T11:27:33Z (GMT). No. of bitstreams: 2 Tese - Deangelis Damasceno - 2016.pdf: 4602737 bytes, checksum: 00c0eed1514b7ff11167a9271ed725e9 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-12-15application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Química (IQ)UFGBrasilInstituto de Química - IQ (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÁgua potávelControle de qualidadeAnálise de imagensCalibração multivariadaPLSPotability of waterPhysical chemical parametersPLSCIENCIAS EXATAS E DA TERRA::QUIMICAControle de qualidade de águas potáveis utilizando análise multivariada de imagensWater quality control of potable water using multivariate image analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis66369392132541515860060060078260667437411972781571700325303117195reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/5ab88155-d487-4020-8c13-3131a96a7884/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/becef029-eddf-41dc-b8d4-ff8f2d4f7142/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://repositorio.bc.ufg.br/tede/bitstreams/a0cfef77-8119-4214-8b23-c6f3130e2204/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/5bd77e40-5fa7-4c7f-9426-95e6ce99fe76/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Deangelis Damasceno - 2016.pdfTese - Deangelis Damasceno - 2016.pdfapplication/pdf4602737http://repositorio.bc.ufg.br/tede/bitstreams/3ff59935-058c-4952-8739-5eb19b41e9c0/download00c0eed1514b7ff11167a9271ed725e9MD55tede/55582016-05-13 08:27:33.445http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5558http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-05-13T11:27:33Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
dc.title.alternative.eng.fl_str_mv |
Water quality control of potable water using multivariate image analysis |
title |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
spellingShingle |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens Damasceno, Deangelis Água potável Controle de qualidade Análise de imagens Calibração multivariada PLS Potability of water Physical chemical parameters PLS CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
title_full |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
title_fullStr |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
title_full_unstemmed |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
title_sort |
Controle de qualidade de águas potáveis utilizando análise multivariada de imagens |
author |
Damasceno, Deangelis |
author_facet |
Damasceno, Deangelis |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Anselmo Elcana de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0369339073291948 |
dc.contributor.advisor-co1.fl_str_mv |
Oliveira, Sérgio Botelho de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3447406257464639 |
dc.contributor.referee1.fl_str_mv |
Oliveira, Anselmo Elcana de |
dc.contributor.referee2.fl_str_mv |
Coelho, Clarimar José |
dc.contributor.referee3.fl_str_mv |
Soares, Anderson da Silva |
dc.contributor.referee4.fl_str_mv |
Chaves, Andréa Rodrigues |
dc.contributor.referee5.fl_str_mv |
Coltro, Wendell Karlos Tomazelli |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2019926629635992 |
dc.contributor.author.fl_str_mv |
Damasceno, Deangelis |
contributor_str_mv |
Oliveira, Anselmo Elcana de Oliveira, Sérgio Botelho de Oliveira, Anselmo Elcana de Coelho, Clarimar José Soares, Anderson da Silva Chaves, Andréa Rodrigues Coltro, Wendell Karlos Tomazelli |
dc.subject.por.fl_str_mv |
Água potável Controle de qualidade Análise de imagens Calibração multivariada PLS |
topic |
Água potável Controle de qualidade Análise de imagens Calibração multivariada PLS Potability of water Physical chemical parameters PLS CIENCIAS EXATAS E DA TERRA::QUIMICA |
dc.subject.eng.fl_str_mv |
Potability of water Physical chemical parameters PLS |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
New digital image based-analytical methodologies are proposed to measure pH, alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron of potable water samples. Multivariate image analysis and partial leastsquares regression were applied to BMP digital images acquired from a CCD-scanner. RGB, HIS, XYZ and YCbCr color spaces and 300 dpi images of 200 μL water samples were employed. This micro volume per sample yielded micro volumes of analytical waste per sample (400.0 μL). PLS root mean square error of prediction (RMSEP) for pH analyses was 0.16. RMSEP values for alkalinity, total hardness, calcium hardness, magnesium hardness, chloride, fluorine, and total iron were 0.03, 1.20, 2.01, 0.07, 0.04, and 0.06 mg L-1, respectively. Analytical figures of merit were computed for all PLS proposed methods. Mean relative errors ranging from 0.20% to 1.33 were found. The proposed methods were validated against standard analytical procedures for water quality control. There were no statistical differences between mean PLS value and the one found using the respective standard procedure (ttest, = 0.05). Precision was found statistically equivalent for pH, alkalinity, chloride, fluoride, and total iron when compared to the related reference method (Ftest, = 0.05). Therefore, the new PLS analytical methods proposed for water control quality can be employed as an alternative to standard methods. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-12-15 |
dc.date.accessioned.fl_str_mv |
2016-05-13T11:27:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DAMASCENO, D. Controle de qualidade de águas potáveis utilizando análise multivariada de imagens. 2015. 150 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/5558 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000460r |
identifier_str_mv |
DAMASCENO, D. Controle de qualidade de águas potáveis utilizando análise multivariada de imagens. 2015. 150 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/001300000460r |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/5558 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
663693921325415158 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
7826066743741197278 |
dc.relation.cnpq.fl_str_mv |
1571700325303117195 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Química (IQ) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química - IQ (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/5ab88155-d487-4020-8c13-3131a96a7884/download http://repositorio.bc.ufg.br/tede/bitstreams/becef029-eddf-41dc-b8d4-ff8f2d4f7142/download http://repositorio.bc.ufg.br/tede/bitstreams/a0cfef77-8119-4214-8b23-c6f3130e2204/download http://repositorio.bc.ufg.br/tede/bitstreams/5bd77e40-5fa7-4c7f-9426-95e6ce99fe76/download http://repositorio.bc.ufg.br/tede/bitstreams/3ff59935-058c-4952-8739-5eb19b41e9c0/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f ef48816a10f2d45f2e2fee2f478e2faf 9da0b6dfac957114c6a7714714b86306 00c0eed1514b7ff11167a9271ed725e9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172554138058752 |