Transformações lineares no plano e aplicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000003sgv |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/3123 |
Resumo: | This paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables. |
id |
UFG-2_1f7ca7bf3b396d7d0e44c40a4d30a7ba |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/3123 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Melo, Maurílio Márciohttp://lattes.cnpq.br/9171320863927413Melo, Maurilio MárcioBorges, Venício VelosoMedrado, João Carlos da Rochahttp://lattes.cnpq.br/6450161008129285Nogueira, Leonardo Bernardes2014-09-23T11:17:17Z2013-03-15NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3123ark:/38995/0013000003sgvThis paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables.Este trabalho inicia-se com um breve embasamento histórico sobre o desenvolvimento de espaços vetoriais e transformações lineares. Em seguida, apresenta conceitos fundamentais básicos, que formam uma linguagem mínima necessária para falar sobre Álgebra Linear, com enfoque maior nos operadores lineares do plano R2. Através de exemplos, explora-se um vasto conjunto de transformações no plano a fim de mostrar outras aplicações de matrizes no ensino médio e prepara o terreno para a apresentação do Teorema Espectral para operadores auto-adjuntos de R2. Este Teorema diz que para todo operador auto-adjunto T : E!E, num espaço vetorial de dimensão finita, munido de produto interno, existe uma base ortonormal fu1; : : : ;ung E formada por autovetores de T. O trabalho culmina com aplicações sobre o estudo das secções cônicas, formas quadráticas e equações do segundo grau em x e y, no qual o Teorema Espectral se traduz como Teorema dos Eixos Principais, embora essa nomenclatura não seja usada nesse trabalho (para um estudo mais aprofundado neste tema ver [3], [4], [5], [7]). Retomando assim um estudo feito por Joseph Louis Lagrange em "Recherche d’Arithmétique", entre 1773 e 1775, no qual estudou a propriedade de números que são a soma de dois quadrados. Assim, foi levado a estudar os efeitos das transformações lineares com coeficientes inteiros numa forma quadrática de duas variáveis.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T13:24:09Z No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-23T11:17:17Z (GMT) No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-23T11:17:17Z (GMT). No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-15Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/8349/Nogueira%2c%20Leonardo%20Bernardes.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em PROFMAT (RG)UFGBrasilInstituto de Matemática e Estatística - IME (RG)[1] BOLDRINI, J. L.; COSTA, S. I. R.; RIBEIRO, V. L. F. F.; WETZLER, H. G. Álgebra Linear. Harbra, São Paulo, 1980. [2] HEFEZ, A.; DE SOUZA FERNANDEZ, C. Introducao a Algebra Linear. SBM, Rio de Janeiro, 2012. [3] HEGENBERG, L. Matrizes, Vetores e Geometria Analítica. Almeida Neves, Rio de Janeiro, 1971. [4] LIMA, E. L. Álgebra Linear. Impa, Rio de Janeiro, 2008. [5] LIPSCHUTZ, S. Álgebra Linear. MacGraw-Hill, Rio de Janeiro, 1980. [6] MORGADO, A. C.; JÚDICE, E. D.; WAGNER, E.; LIMA, E. L.; DE CARVALHO, J. B. P.; CARNEIRO, J. P. Q.; GOMES, M. L. M.; CARVALHO, P. C. P. Exame de textos: Análise de livros de Matemática para o ensino médio. SBM, Rio de Janeiro, 2001. [7] NACHBIN, L. Introducão a Álgebra. MacGraw-Hill, Rio de Janeiro, 1971. [8] PENNEY, D. E.; C.H. EDWARDS, J. Introducão à Álgebra Linear. LTC-Livros T’ecnicos e Cient’ificos Editora S.A, Rio de Janeiro, 1998.5637905143957969341600600600600-426877751233515201583989707851798577902075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÁlgebra linearTeorema espectralSecções cônicasLinear algebraSpectral TheoremConic SectionMATEMATICA::MATEMATICA APLICADATransformações lineares no plano e aplicaçõesLinear transformations on the plane and applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALNogueira, Leonardo Bernardes.pdfNogueira, Leonardo Bernardes.pdfDissertação - PPGPROFMAT/REDE/RG - Leonardo Bernardes Nogueiraapplication/pdf4758026http://repositorio.bc.ufg.br/tede/bitstreams/72cb14c6-1ada-48e5-a531-b9cf72d255fe/download81be665ec243b277cb285cc686730f04MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/93f38df4-6711-4944-bc18-5901e939406c/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/e47f3b6d-9f51-49a8-bac0-e94a3071fb33/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/404454d3-181a-4ce6-8dc0-3a42cd27a471/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/0a6cbd99-a468-44a9-abd8-057596a4fe87/download9da0b6dfac957114c6a7714714b86306MD54TEXTNogueira, Leonardo Bernardes.pdf.txtNogueira, Leonardo Bernardes.pdf.txtExtracted Texttext/plain94970http://repositorio.bc.ufg.br/tede/bitstreams/f941db38-5f81-4c55-885c-3c42f19f8ec0/downloadba9b594047c2a85923ac667fbb716c5aMD56THUMBNAILNogueira, Leonardo Bernardes.pdf.jpgNogueira, Leonardo Bernardes.pdf.jpgGenerated Thumbnailimage/jpeg3714http://repositorio.bc.ufg.br/tede/bitstreams/d3a7b27b-f313-420e-9f84-15de6d3f7c8b/downloadb6dfa491ea1dc12787db401d3bb85d4cMD57tede/31232014-09-24 03:01:27.859http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3123http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-24T06:01:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Transformações lineares no plano e aplicações |
dc.title.alternative.eng.fl_str_mv |
Linear transformations on the plane and applications |
title |
Transformações lineares no plano e aplicações |
spellingShingle |
Transformações lineares no plano e aplicações Nogueira, Leonardo Bernardes Álgebra linear Teorema espectral Secções cônicas Linear algebra Spectral Theorem Conic Section MATEMATICA::MATEMATICA APLICADA |
title_short |
Transformações lineares no plano e aplicações |
title_full |
Transformações lineares no plano e aplicações |
title_fullStr |
Transformações lineares no plano e aplicações |
title_full_unstemmed |
Transformações lineares no plano e aplicações |
title_sort |
Transformações lineares no plano e aplicações |
author |
Nogueira, Leonardo Bernardes |
author_facet |
Nogueira, Leonardo Bernardes |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Melo, Maurílio Márcio |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9171320863927413 |
dc.contributor.referee1.fl_str_mv |
Melo, Maurilio Márcio |
dc.contributor.referee2.fl_str_mv |
Borges, Venício Veloso |
dc.contributor.referee3.fl_str_mv |
Medrado, João Carlos da Rocha |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6450161008129285 |
dc.contributor.author.fl_str_mv |
Nogueira, Leonardo Bernardes |
contributor_str_mv |
Melo, Maurílio Márcio Melo, Maurilio Márcio Borges, Venício Veloso Medrado, João Carlos da Rocha |
dc.subject.por.fl_str_mv |
Álgebra linear Teorema espectral Secções cônicas |
topic |
Álgebra linear Teorema espectral Secções cônicas Linear algebra Spectral Theorem Conic Section MATEMATICA::MATEMATICA APLICADA |
dc.subject.eng.fl_str_mv |
Linear algebra Spectral Theorem Conic Section |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::MATEMATICA APLICADA |
description |
This paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-03-15 |
dc.date.accessioned.fl_str_mv |
2014-09-23T11:17:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/3123 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000003sgv |
identifier_str_mv |
NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013. ark:/38995/0013000003sgv |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/3123 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
5637905143957969341 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
8398970785179857790 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.relation.references.por.fl_str_mv |
[1] BOLDRINI, J. L.; COSTA, S. I. R.; RIBEIRO, V. L. F. F.; WETZLER, H. G. Álgebra Linear. Harbra, São Paulo, 1980. [2] HEFEZ, A.; DE SOUZA FERNANDEZ, C. Introducao a Algebra Linear. SBM, Rio de Janeiro, 2012. [3] HEGENBERG, L. Matrizes, Vetores e Geometria Analítica. Almeida Neves, Rio de Janeiro, 1971. [4] LIMA, E. L. Álgebra Linear. Impa, Rio de Janeiro, 2008. [5] LIPSCHUTZ, S. Álgebra Linear. MacGraw-Hill, Rio de Janeiro, 1980. [6] MORGADO, A. C.; JÚDICE, E. D.; WAGNER, E.; LIMA, E. L.; DE CARVALHO, J. B. P.; CARNEIRO, J. P. Q.; GOMES, M. L. M.; CARVALHO, P. C. P. Exame de textos: Análise de livros de Matemática para o ensino médio. SBM, Rio de Janeiro, 2001. [7] NACHBIN, L. Introducão a Álgebra. MacGraw-Hill, Rio de Janeiro, 1971. [8] PENNEY, D. E.; C.H. EDWARDS, J. Introducão à Álgebra Linear. LTC-Livros T’ecnicos e Cient’ificos Editora S.A, Rio de Janeiro, 1998. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em PROFMAT (RG) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/72cb14c6-1ada-48e5-a531-b9cf72d255fe/download http://repositorio.bc.ufg.br/tede/bitstreams/93f38df4-6711-4944-bc18-5901e939406c/download http://repositorio.bc.ufg.br/tede/bitstreams/e47f3b6d-9f51-49a8-bac0-e94a3071fb33/download http://repositorio.bc.ufg.br/tede/bitstreams/404454d3-181a-4ce6-8dc0-3a42cd27a471/download http://repositorio.bc.ufg.br/tede/bitstreams/0a6cbd99-a468-44a9-abd8-057596a4fe87/download http://repositorio.bc.ufg.br/tede/bitstreams/f941db38-5f81-4c55-885c-3c42f19f8ec0/download http://repositorio.bc.ufg.br/tede/bitstreams/d3a7b27b-f313-420e-9f84-15de6d3f7c8b/download |
bitstream.checksum.fl_str_mv |
81be665ec243b277cb285cc686730f04 bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f 1e0094e9d8adcf16b18effef4ce7ed83 9da0b6dfac957114c6a7714714b86306 ba9b594047c2a85923ac667fbb716c5a b6dfa491ea1dc12787db401d3bb85d4c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172549815828480 |