Transformações lineares no plano e aplicações

Detalhes bibliográficos
Autor(a) principal: Nogueira, Leonardo Bernardes
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000003sgv
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/3123
Resumo: This paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables.
id UFG-2_1f7ca7bf3b396d7d0e44c40a4d30a7ba
oai_identifier_str oai:repositorio.bc.ufg.br:tede/3123
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Melo, Maurílio Márciohttp://lattes.cnpq.br/9171320863927413Melo, Maurilio MárcioBorges, Venício VelosoMedrado, João Carlos da Rochahttp://lattes.cnpq.br/6450161008129285Nogueira, Leonardo Bernardes2014-09-23T11:17:17Z2013-03-15NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3123ark:/38995/0013000003sgvThis paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables.Este trabalho inicia-se com um breve embasamento histórico sobre o desenvolvimento de espaços vetoriais e transformações lineares. Em seguida, apresenta conceitos fundamentais básicos, que formam uma linguagem mínima necessária para falar sobre Álgebra Linear, com enfoque maior nos operadores lineares do plano R2. Através de exemplos, explora-se um vasto conjunto de transformações no plano a fim de mostrar outras aplicações de matrizes no ensino médio e prepara o terreno para a apresentação do Teorema Espectral para operadores auto-adjuntos de R2. Este Teorema diz que para todo operador auto-adjunto T : E!E, num espaço vetorial de dimensão finita, munido de produto interno, existe uma base ortonormal fu1; : : : ;ung E formada por autovetores de T. O trabalho culmina com aplicações sobre o estudo das secções cônicas, formas quadráticas e equações do segundo grau em x e y, no qual o Teorema Espectral se traduz como Teorema dos Eixos Principais, embora essa nomenclatura não seja usada nesse trabalho (para um estudo mais aprofundado neste tema ver [3], [4], [5], [7]). Retomando assim um estudo feito por Joseph Louis Lagrange em "Recherche d’Arithmétique", entre 1773 e 1775, no qual estudou a propriedade de números que são a soma de dois quadrados. Assim, foi levado a estudar os efeitos das transformações lineares com coeficientes inteiros numa forma quadrática de duas variáveis.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T13:24:09Z No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-23T11:17:17Z (GMT) No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-23T11:17:17Z (GMT). No. of bitstreams: 2 Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-15Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/8349/Nogueira%2c%20Leonardo%20Bernardes.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em PROFMAT (RG)UFGBrasilInstituto de Matemática e Estatística - IME (RG)[1] BOLDRINI, J. L.; COSTA, S. I. R.; RIBEIRO, V. L. F. F.; WETZLER, H. G. Álgebra Linear. Harbra, São Paulo, 1980. [2] HEFEZ, A.; DE SOUZA FERNANDEZ, C. Introducao a Algebra Linear. SBM, Rio de Janeiro, 2012. [3] HEGENBERG, L. Matrizes, Vetores e Geometria Analítica. Almeida Neves, Rio de Janeiro, 1971. [4] LIMA, E. L. Álgebra Linear. Impa, Rio de Janeiro, 2008. [5] LIPSCHUTZ, S. Álgebra Linear. MacGraw-Hill, Rio de Janeiro, 1980. [6] MORGADO, A. C.; JÚDICE, E. D.; WAGNER, E.; LIMA, E. L.; DE CARVALHO, J. B. P.; CARNEIRO, J. P. Q.; GOMES, M. L. M.; CARVALHO, P. C. P. Exame de textos: Análise de livros de Matemática para o ensino médio. SBM, Rio de Janeiro, 2001. [7] NACHBIN, L. Introducão a Álgebra. MacGraw-Hill, Rio de Janeiro, 1971. [8] PENNEY, D. E.; C.H. EDWARDS, J. Introducão à Álgebra Linear. LTC-Livros T’ecnicos e Cient’ificos Editora S.A, Rio de Janeiro, 1998.5637905143957969341600600600600-426877751233515201583989707851798577902075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÁlgebra linearTeorema espectralSecções cônicasLinear algebraSpectral TheoremConic SectionMATEMATICA::MATEMATICA APLICADATransformações lineares no plano e aplicaçõesLinear transformations on the plane and applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALNogueira, Leonardo Bernardes.pdfNogueira, Leonardo Bernardes.pdfDissertação - PPGPROFMAT/REDE/RG - Leonardo Bernardes Nogueiraapplication/pdf4758026http://repositorio.bc.ufg.br/tede/bitstreams/72cb14c6-1ada-48e5-a531-b9cf72d255fe/download81be665ec243b277cb285cc686730f04MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/93f38df4-6711-4944-bc18-5901e939406c/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/e47f3b6d-9f51-49a8-bac0-e94a3071fb33/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/404454d3-181a-4ce6-8dc0-3a42cd27a471/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/0a6cbd99-a468-44a9-abd8-057596a4fe87/download9da0b6dfac957114c6a7714714b86306MD54TEXTNogueira, Leonardo Bernardes.pdf.txtNogueira, Leonardo Bernardes.pdf.txtExtracted Texttext/plain94970http://repositorio.bc.ufg.br/tede/bitstreams/f941db38-5f81-4c55-885c-3c42f19f8ec0/downloadba9b594047c2a85923ac667fbb716c5aMD56THUMBNAILNogueira, Leonardo Bernardes.pdf.jpgNogueira, Leonardo Bernardes.pdf.jpgGenerated Thumbnailimage/jpeg3714http://repositorio.bc.ufg.br/tede/bitstreams/d3a7b27b-f313-420e-9f84-15de6d3f7c8b/downloadb6dfa491ea1dc12787db401d3bb85d4cMD57tede/31232014-09-24 03:01:27.859http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3123http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-24T06:01:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Transformações lineares no plano e aplicações
dc.title.alternative.eng.fl_str_mv Linear transformations on the plane and applications
title Transformações lineares no plano e aplicações
spellingShingle Transformações lineares no plano e aplicações
Nogueira, Leonardo Bernardes
Álgebra linear
Teorema espectral
Secções cônicas
Linear algebra
Spectral Theorem
Conic Section
MATEMATICA::MATEMATICA APLICADA
title_short Transformações lineares no plano e aplicações
title_full Transformações lineares no plano e aplicações
title_fullStr Transformações lineares no plano e aplicações
title_full_unstemmed Transformações lineares no plano e aplicações
title_sort Transformações lineares no plano e aplicações
author Nogueira, Leonardo Bernardes
author_facet Nogueira, Leonardo Bernardes
author_role author
dc.contributor.advisor1.fl_str_mv Melo, Maurílio Márcio
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9171320863927413
dc.contributor.referee1.fl_str_mv Melo, Maurilio Márcio
dc.contributor.referee2.fl_str_mv Borges, Venício Veloso
dc.contributor.referee3.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6450161008129285
dc.contributor.author.fl_str_mv Nogueira, Leonardo Bernardes
contributor_str_mv Melo, Maurílio Márcio
Melo, Maurilio Márcio
Borges, Venício Veloso
Medrado, João Carlos da Rocha
dc.subject.por.fl_str_mv Álgebra linear
Teorema espectral
Secções cônicas
topic Álgebra linear
Teorema espectral
Secções cônicas
Linear algebra
Spectral Theorem
Conic Section
MATEMATICA::MATEMATICA APLICADA
dc.subject.eng.fl_str_mv Linear algebra
Spectral Theorem
Conic Section
dc.subject.cnpq.fl_str_mv MATEMATICA::MATEMATICA APLICADA
description This paper begins with a brief history about the development of vector spaces and linear transformations, then presents fundamental concepts for the study of Linear Algebra, with greater focus on linear operators in the R2 space. Through examples it explores a wide range of operators in R2 in order to show other applications of matrices in high school and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint operators in R2, which says that for every operator self-adjoint T : E!E in finite dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E formed by eigenvectors of T, and culminates with their applications on the study of conic sections, quadratic forms and equations of second degree in x and y; on the study of operators associated to quadratic forms, a version of Spectral Theorem could be called as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773 and 1775, which he studied the property of numbers that are the sum of two squares. Thus he was led to study the effects of linear transformation with integer coefficients in a quadratic form in two variables.
publishDate 2013
dc.date.issued.fl_str_mv 2013-03-15
dc.date.accessioned.fl_str_mv 2014-09-23T11:17:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/3123
dc.identifier.dark.fl_str_mv ark:/38995/0013000003sgv
identifier_str_mv NOGUEIRA, Leonardo Bernardes. Transformações lineares no plano e aplicações. 2013. 62 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/0013000003sgv
url http://repositorio.bc.ufg.br/tede/handle/tede/3123
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 5637905143957969341
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv 8398970785179857790
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.relation.references.por.fl_str_mv [1] BOLDRINI, J. L.; COSTA, S. I. R.; RIBEIRO, V. L. F. F.; WETZLER, H. G. Álgebra Linear. Harbra, São Paulo, 1980. [2] HEFEZ, A.; DE SOUZA FERNANDEZ, C. Introducao a Algebra Linear. SBM, Rio de Janeiro, 2012. [3] HEGENBERG, L. Matrizes, Vetores e Geometria Analítica. Almeida Neves, Rio de Janeiro, 1971. [4] LIMA, E. L. Álgebra Linear. Impa, Rio de Janeiro, 2008. [5] LIPSCHUTZ, S. Álgebra Linear. MacGraw-Hill, Rio de Janeiro, 1980. [6] MORGADO, A. C.; JÚDICE, E. D.; WAGNER, E.; LIMA, E. L.; DE CARVALHO, J. B. P.; CARNEIRO, J. P. Q.; GOMES, M. L. M.; CARVALHO, P. C. P. Exame de textos: Análise de livros de Matemática para o ensino médio. SBM, Rio de Janeiro, 2001. [7] NACHBIN, L. Introducão a Álgebra. MacGraw-Hill, Rio de Janeiro, 1971. [8] PENNEY, D. E.; C.H. EDWARDS, J. Introducão à Álgebra Linear. LTC-Livros T’ecnicos e Cient’ificos Editora S.A, Rio de Janeiro, 1998.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em PROFMAT (RG)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/72cb14c6-1ada-48e5-a531-b9cf72d255fe/download
http://repositorio.bc.ufg.br/tede/bitstreams/93f38df4-6711-4944-bc18-5901e939406c/download
http://repositorio.bc.ufg.br/tede/bitstreams/e47f3b6d-9f51-49a8-bac0-e94a3071fb33/download
http://repositorio.bc.ufg.br/tede/bitstreams/404454d3-181a-4ce6-8dc0-3a42cd27a471/download
http://repositorio.bc.ufg.br/tede/bitstreams/0a6cbd99-a468-44a9-abd8-057596a4fe87/download
http://repositorio.bc.ufg.br/tede/bitstreams/f941db38-5f81-4c55-885c-3c42f19f8ec0/download
http://repositorio.bc.ufg.br/tede/bitstreams/d3a7b27b-f313-420e-9f84-15de6d3f7c8b/download
bitstream.checksum.fl_str_mv 81be665ec243b277cb285cc686730f04
bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
1e0094e9d8adcf16b18effef4ce7ed83
9da0b6dfac957114c6a7714714b86306
ba9b594047c2a85923ac667fbb716c5a
b6dfa491ea1dc12787db401d3bb85d4c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172549815828480