Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000002555 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9108 |
Resumo: | In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems. |
id |
UFG-2_39b52372c270779eb1ffad50089f78a1 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9108 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Cruz Junior, Gelson dahttp://lattes.cnpq.br/4370555454162131Silva, Karina Rocha Gomes daRodrigues, Cássio LeonardoCruz Junior, Gelson dahttp://lattes.cnpq.br/7075970611961812Melo, Leonardo Alves Moreira de2018-11-29T11:09:58Z2018-10-26MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/9108ark:/38995/0013000002555In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems.O número de algoritmos baseados na otimização por enxame de partículas (PSO) aplicados para resolver problemas de otimização em grande escala (até 2.000 variáveis) aumentou significativamente. Este trabalho apresenta análises e comparações entre cinco algoritmos (CCPSO2, LSSPSO, OBL-CPSO, SPSO e VCPSO). Testes foram realizados para ilustrar a eficiência e viabilidade de usar os algoritmos para resolver problemas em larga escala. Seis funções de referência que são comumente utilizadas na literatura (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 e Sphere) foram utilizadas para testar a performancedesses algoritmos. Os experimentos foram realizados utilizando um problema de alta dimensionalidade (500 variáveis), variando o número de partículas (50, 100 e 200 partículas) em cada algoritmo, aumentando assim a complexidade computacional. A análise mostrou que os algoritmos CCPSO2 e OBL-CPSO mostraram-se significativamente melhores que os outros algoritmos para problemas multimodais mais complexos (que mais se assemelham a problemas reais). No entanto, considerando as funções unimodais, o algoritmo CCPSO2 destacou-se perante os demais. Nossos resultados e análises experimentais sugerem que o CCPSO2 e o OBL-CPSO são algoritmos de otimização altamente competitivos para resolver problemas de otimização complexos e multimodais em larga escala.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-29T10:40:19Z No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-29T11:09:58Z (GMT) No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-11-29T11:09:58Z (GMT). No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-26Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEnxame de partículasPSOOtimizaçãoParticle swarmPSOOptimizationENGENHARIAS::ENGENHARIA ELETRICAComparação de algoritmos de enxame de partículas para otimização de problemas em larga escalaComparison of particle swarm optimization algorithms for large scale problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5088589215393046129600600600600-7705723421721944646-1431013593610671097-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Leonardo Alves Moreira de Melo - 2018.pdfDissertação - Leonardo Alves Moreira de Melo - 2018.pdfapplication/pdf2693689http://repositorio.bc.ufg.br/tede/bitstreams/2df976e8-fa38-4264-aac2-f631c47e55aa/download850fbad5a82099825d2478ba3415dcacMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/a06b61e6-024d-4c35-8a9e-5ae5fcb292dd/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/6779b193-6c98-4408-9f52-30d93c183e2f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/8ce55356-fd37-4b9f-b3cf-d32f24fd219d/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7f3fcdc2-b54e-46c0-b345-38909943bf46/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/91082018-11-29 09:09:58.71http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9108http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-11-29T11:09:58Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
dc.title.alternative.eng.fl_str_mv |
Comparison of particle swarm optimization algorithms for large scale problems |
title |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
spellingShingle |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala Melo, Leonardo Alves Moreira de Enxame de partículas PSO Otimização Particle swarm PSO Optimization ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
title_full |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
title_fullStr |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
title_full_unstemmed |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
title_sort |
Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala |
author |
Melo, Leonardo Alves Moreira de |
author_facet |
Melo, Leonardo Alves Moreira de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Cruz Junior, Gelson da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4370555454162131 |
dc.contributor.referee1.fl_str_mv |
Silva, Karina Rocha Gomes da |
dc.contributor.referee2.fl_str_mv |
Rodrigues, Cássio Leonardo |
dc.contributor.referee3.fl_str_mv |
Cruz Junior, Gelson da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7075970611961812 |
dc.contributor.author.fl_str_mv |
Melo, Leonardo Alves Moreira de |
contributor_str_mv |
Cruz Junior, Gelson da Silva, Karina Rocha Gomes da Rodrigues, Cássio Leonardo Cruz Junior, Gelson da |
dc.subject.por.fl_str_mv |
Enxame de partículas PSO Otimização |
topic |
Enxame de partículas PSO Otimização Particle swarm PSO Optimization ENGENHARIAS::ENGENHARIA ELETRICA |
dc.subject.eng.fl_str_mv |
Particle swarm PSO Optimization |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA ELETRICA |
description |
In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-11-29T11:09:58Z |
dc.date.issued.fl_str_mv |
2018-10-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9108 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000002555 |
identifier_str_mv |
MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018. ark:/38995/0013000002555 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9108 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5088589215393046129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7705723421721944646 |
dc.relation.cnpq.fl_str_mv |
-1431013593610671097 |
dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/2df976e8-fa38-4264-aac2-f631c47e55aa/download http://repositorio.bc.ufg.br/tede/bitstreams/a06b61e6-024d-4c35-8a9e-5ae5fcb292dd/download http://repositorio.bc.ufg.br/tede/bitstreams/6779b193-6c98-4408-9f52-30d93c183e2f/download http://repositorio.bc.ufg.br/tede/bitstreams/8ce55356-fd37-4b9f-b3cf-d32f24fd219d/download http://repositorio.bc.ufg.br/tede/bitstreams/7f3fcdc2-b54e-46c0-b345-38909943bf46/download |
bitstream.checksum.fl_str_mv |
850fbad5a82099825d2478ba3415dcac bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172531511885824 |