Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala

Detalhes bibliográficos
Autor(a) principal: Melo, Leonardo Alves Moreira de
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000002555
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9108
Resumo: In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems.
id UFG-2_39b52372c270779eb1ffad50089f78a1
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9108
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Cruz Junior, Gelson dahttp://lattes.cnpq.br/4370555454162131Silva, Karina Rocha Gomes daRodrigues, Cássio LeonardoCruz Junior, Gelson dahttp://lattes.cnpq.br/7075970611961812Melo, Leonardo Alves Moreira de2018-11-29T11:09:58Z2018-10-26MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/9108ark:/38995/0013000002555In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems.O número de algoritmos baseados na otimização por enxame de partículas (PSO) aplicados para resolver problemas de otimização em grande escala (até 2.000 variáveis) aumentou significativamente. Este trabalho apresenta análises e comparações entre cinco algoritmos (CCPSO2, LSSPSO, OBL-CPSO, SPSO e VCPSO). Testes foram realizados para ilustrar a eficiência e viabilidade de usar os algoritmos para resolver problemas em larga escala. Seis funções de referência que são comumente utilizadas na literatura (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 e Sphere) foram utilizadas para testar a performancedesses algoritmos. Os experimentos foram realizados utilizando um problema de alta dimensionalidade (500 variáveis), variando o número de partículas (50, 100 e 200 partículas) em cada algoritmo, aumentando assim a complexidade computacional. A análise mostrou que os algoritmos CCPSO2 e OBL-CPSO mostraram-se significativamente melhores que os outros algoritmos para problemas multimodais mais complexos (que mais se assemelham a problemas reais). No entanto, considerando as funções unimodais, o algoritmo CCPSO2 destacou-se perante os demais. Nossos resultados e análises experimentais sugerem que o CCPSO2 e o OBL-CPSO são algoritmos de otimização altamente competitivos para resolver problemas de otimização complexos e multimodais em larga escala.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-29T10:40:19Z No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-29T11:09:58Z (GMT) No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-11-29T11:09:58Z (GMT). No. of bitstreams: 2 Dissertação - Leonardo Alves Moreira de Melo - 2018.pdf: 2693689 bytes, checksum: 850fbad5a82099825d2478ba3415dcac (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-26Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEnxame de partículasPSOOtimizaçãoParticle swarmPSOOptimizationENGENHARIAS::ENGENHARIA ELETRICAComparação de algoritmos de enxame de partículas para otimização de problemas em larga escalaComparison of particle swarm optimization algorithms for large scale problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5088589215393046129600600600600-7705723421721944646-1431013593610671097-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Leonardo Alves Moreira de Melo - 2018.pdfDissertação - Leonardo Alves Moreira de Melo - 2018.pdfapplication/pdf2693689http://repositorio.bc.ufg.br/tede/bitstreams/2df976e8-fa38-4264-aac2-f631c47e55aa/download850fbad5a82099825d2478ba3415dcacMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/a06b61e6-024d-4c35-8a9e-5ae5fcb292dd/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/6779b193-6c98-4408-9f52-30d93c183e2f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/8ce55356-fd37-4b9f-b3cf-d32f24fd219d/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7f3fcdc2-b54e-46c0-b345-38909943bf46/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/91082018-11-29 09:09:58.71http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9108http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-11-29T11:09:58Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
dc.title.alternative.eng.fl_str_mv Comparison of particle swarm optimization algorithms for large scale problems
title Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
spellingShingle Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
Melo, Leonardo Alves Moreira de
Enxame de partículas
PSO
Otimização
Particle swarm
PSO
Optimization
ENGENHARIAS::ENGENHARIA ELETRICA
title_short Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
title_full Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
title_fullStr Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
title_full_unstemmed Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
title_sort Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala
author Melo, Leonardo Alves Moreira de
author_facet Melo, Leonardo Alves Moreira de
author_role author
dc.contributor.advisor1.fl_str_mv Cruz Junior, Gelson da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4370555454162131
dc.contributor.referee1.fl_str_mv Silva, Karina Rocha Gomes da
dc.contributor.referee2.fl_str_mv Rodrigues, Cássio Leonardo
dc.contributor.referee3.fl_str_mv Cruz Junior, Gelson da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7075970611961812
dc.contributor.author.fl_str_mv Melo, Leonardo Alves Moreira de
contributor_str_mv Cruz Junior, Gelson da
Silva, Karina Rocha Gomes da
Rodrigues, Cássio Leonardo
Cruz Junior, Gelson da
dc.subject.por.fl_str_mv Enxame de partículas
PSO
Otimização
topic Enxame de partículas
PSO
Otimização
Particle swarm
PSO
Optimization
ENGENHARIAS::ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Particle swarm
PSO
Optimization
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA ELETRICA
description In order to address an issue concerning the increasing number of algorithms based on particle swarm optimization (PSO) applied to solve large-scale optimization problems (up to 2000 variables), this article presents analysis and comparisons among five state- of-the-art PSO algorithms (CCPSO2, LSS- PSO, OBL-PSO, SPSO and VCPSO). Tests were performed to illustrate the e ciency and feasibility of using the algorithms for this type of problem. Six benchmark functions most commonly used in the literature (Ackley 1, Griewank, Rastrigin, Rosenbrock, Schwefel 1.2 and Sphere) were tested. The experiments were performed using a high-dimensional problem (500 variables), varying the number of particles (50, 100 and 200 particles) in each algorithm, thus increasing the computational complexity. The analysis showed that the CCPSO2 and OBL-PSO algorithms found significantly better solutions than the other algorithms for more complex multimodal problems (which most resemble realworld problems). However, considering unimodal functions, the CCPSO2 algorithm stood out before the others. Our results and experimental analysis suggest that CCPSO2 and OBL- PSO seem to be highly competitive optimization algorithms to solve complex and multimodal optimization problems.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-11-29T11:09:58Z
dc.date.issued.fl_str_mv 2018-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9108
dc.identifier.dark.fl_str_mv ark:/38995/0013000002555
identifier_str_mv MELO, L. A. M. Comparação de algoritmos de enxame de partículas para otimização de problemas em larga escala. 2018. 64 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2018.
ark:/38995/0013000002555
url http://repositorio.bc.ufg.br/tede/handle/tede/9108
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5088589215393046129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7705723421721944646
dc.relation.cnpq.fl_str_mv -1431013593610671097
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/2df976e8-fa38-4264-aac2-f631c47e55aa/download
http://repositorio.bc.ufg.br/tede/bitstreams/a06b61e6-024d-4c35-8a9e-5ae5fcb292dd/download
http://repositorio.bc.ufg.br/tede/bitstreams/6779b193-6c98-4408-9f52-30d93c183e2f/download
http://repositorio.bc.ufg.br/tede/bitstreams/8ce55356-fd37-4b9f-b3cf-d32f24fd219d/download
http://repositorio.bc.ufg.br/tede/bitstreams/7f3fcdc2-b54e-46c0-b345-38909943bf46/download
bitstream.checksum.fl_str_mv 850fbad5a82099825d2478ba3415dcac
bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172531511885824