Conjectura de Artin: um estudo sobre pares de formas aditivas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000dhn7 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/5326 |
Resumo: | This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels. |
id |
UFG-2_3a19615c3b5bbb01c1c8c8e1af3298e0 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/5326 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rodrigues, Paulo Henrique de Azevedohttp://lattes.cnpq.br/8910130626123426Rodrigues, Paulo Henrique de AzevedoGodinho, Hemar TeixeiraChaves, Ana Paula de Araújohttp://lattes.cnpq.br/7419789054939681Camacho, Adriana Marcela Fonce2016-03-14T14:08:40Z2014-08-22CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/5326ark:/38995/001300000dhn7This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels.Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução não trivial nos níveis seguintes.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-10T17:35:32Z No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-22Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessNúmeros p-ádicosColoraçãoContraçõesConjectura de ArtinP-adic numbersColoured variablesContractionsArtin´s conjectureMATEMATICA::ALGEBRAConjectura de Artin: um estudo sobre pares de formas aditivasArtin´s conjecture: a study of pairs of additive formsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-63833683577339415522075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/af21bd03-6761-4bdf-9cb5-a445251c5ec0/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/c3829e80-4747-4127-bb6a-5b10c450c4c0/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://repositorio.bc.ufg.br/tede/bitstreams/5e00cb9f-d26f-4524-add4-974662e0794e/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/71aaf0c8-07d8-4ea9-96c4-7524eee3697c/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertação - Adriana Marcela Fonce Camacho - 2014.pdfDissertação - Adriana Marcela Fonce Camacho - 2014.pdfapplication/pdf981401http://repositorio.bc.ufg.br/tede/bitstreams/25780c5c-d26f-406e-bd1c-2ea87ae4a8ba/downloada14522ebe9ae77cf599946d25752f8b4MD55tede/53262016-03-14 11:08:40.275http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5326http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-03-14T14:08:40Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
dc.title.alternative.eng.fl_str_mv |
Artin´s conjecture: a study of pairs of additive forms |
title |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
spellingShingle |
Conjectura de Artin: um estudo sobre pares de formas aditivas Camacho, Adriana Marcela Fonce Números p-ádicos Coloração Contrações Conjectura de Artin P-adic numbers Coloured variables Contractions Artin´s conjecture MATEMATICA::ALGEBRA |
title_short |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
title_full |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
title_fullStr |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
title_full_unstemmed |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
title_sort |
Conjectura de Artin: um estudo sobre pares de formas aditivas |
author |
Camacho, Adriana Marcela Fonce |
author_facet |
Camacho, Adriana Marcela Fonce |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rodrigues, Paulo Henrique de Azevedo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8910130626123426 |
dc.contributor.referee1.fl_str_mv |
Rodrigues, Paulo Henrique de Azevedo |
dc.contributor.referee2.fl_str_mv |
Godinho, Hemar Teixeira |
dc.contributor.referee3.fl_str_mv |
Chaves, Ana Paula de Araújo |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7419789054939681 |
dc.contributor.author.fl_str_mv |
Camacho, Adriana Marcela Fonce |
contributor_str_mv |
Rodrigues, Paulo Henrique de Azevedo Rodrigues, Paulo Henrique de Azevedo Godinho, Hemar Teixeira Chaves, Ana Paula de Araújo |
dc.subject.por.fl_str_mv |
Números p-ádicos Coloração Contrações Conjectura de Artin |
topic |
Números p-ádicos Coloração Contrações Conjectura de Artin P-adic numbers Coloured variables Contractions Artin´s conjecture MATEMATICA::ALGEBRA |
dc.subject.eng.fl_str_mv |
P-adic numbers Coloured variables Contractions Artin´s conjecture |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::ALGEBRA |
description |
This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-08-22 |
dc.date.accessioned.fl_str_mv |
2016-03-14T14:08:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/5326 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000dhn7 |
identifier_str_mv |
CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014. ark:/38995/001300000dhn7 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/5326 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-6383368357733941552 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/af21bd03-6761-4bdf-9cb5-a445251c5ec0/download http://repositorio.bc.ufg.br/tede/bitstreams/c3829e80-4747-4127-bb6a-5b10c450c4c0/download http://repositorio.bc.ufg.br/tede/bitstreams/5e00cb9f-d26f-4524-add4-974662e0794e/download http://repositorio.bc.ufg.br/tede/bitstreams/71aaf0c8-07d8-4ea9-96c4-7524eee3697c/download http://repositorio.bc.ufg.br/tede/bitstreams/25780c5c-d26f-406e-bd1c-2ea87ae4a8ba/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f ef48816a10f2d45f2e2fee2f478e2faf 9da0b6dfac957114c6a7714714b86306 a14522ebe9ae77cf599946d25752f8b4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172643280650240 |