Conjectura de Artin: um estudo sobre pares de formas aditivas

Detalhes bibliográficos
Autor(a) principal: Camacho, Adriana Marcela Fonce
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000dhn7
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/5326
Resumo: This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels.
id UFG-2_3a19615c3b5bbb01c1c8c8e1af3298e0
oai_identifier_str oai:repositorio.bc.ufg.br:tede/5326
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Rodrigues, Paulo Henrique de Azevedohttp://lattes.cnpq.br/8910130626123426Rodrigues, Paulo Henrique de AzevedoGodinho, Hemar TeixeiraChaves, Ana Paula de Araújohttp://lattes.cnpq.br/7419789054939681Camacho, Adriana Marcela Fonce2016-03-14T14:08:40Z2014-08-22CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/5326ark:/38995/001300000dhn7This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels.Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução não trivial nos níveis seguintes.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-10T17:35:32Z No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2 Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-22Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessNúmeros p-ádicosColoraçãoContraçõesConjectura de ArtinP-adic numbersColoured variablesContractionsArtin´s conjectureMATEMATICA::ALGEBRAConjectura de Artin: um estudo sobre pares de formas aditivasArtin´s conjecture: a study of pairs of additive formsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-63833683577339415522075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/af21bd03-6761-4bdf-9cb5-a445251c5ec0/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/c3829e80-4747-4127-bb6a-5b10c450c4c0/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://repositorio.bc.ufg.br/tede/bitstreams/5e00cb9f-d26f-4524-add4-974662e0794e/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/71aaf0c8-07d8-4ea9-96c4-7524eee3697c/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertação - Adriana Marcela Fonce Camacho - 2014.pdfDissertação - Adriana Marcela Fonce Camacho - 2014.pdfapplication/pdf981401http://repositorio.bc.ufg.br/tede/bitstreams/25780c5c-d26f-406e-bd1c-2ea87ae4a8ba/downloada14522ebe9ae77cf599946d25752f8b4MD55tede/53262016-03-14 11:08:40.275http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5326http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-03-14T14:08:40Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Conjectura de Artin: um estudo sobre pares de formas aditivas
dc.title.alternative.eng.fl_str_mv Artin´s conjecture: a study of pairs of additive forms
title Conjectura de Artin: um estudo sobre pares de formas aditivas
spellingShingle Conjectura de Artin: um estudo sobre pares de formas aditivas
Camacho, Adriana Marcela Fonce
Números p-ádicos
Coloração
Contrações
Conjectura de Artin
P-adic numbers
Coloured variables
Contractions
Artin´s conjecture
MATEMATICA::ALGEBRA
title_short Conjectura de Artin: um estudo sobre pares de formas aditivas
title_full Conjectura de Artin: um estudo sobre pares de formas aditivas
title_fullStr Conjectura de Artin: um estudo sobre pares de formas aditivas
title_full_unstemmed Conjectura de Artin: um estudo sobre pares de formas aditivas
title_sort Conjectura de Artin: um estudo sobre pares de formas aditivas
author Camacho, Adriana Marcela Fonce
author_facet Camacho, Adriana Marcela Fonce
author_role author
dc.contributor.advisor1.fl_str_mv Rodrigues, Paulo Henrique de Azevedo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8910130626123426
dc.contributor.referee1.fl_str_mv Rodrigues, Paulo Henrique de Azevedo
dc.contributor.referee2.fl_str_mv Godinho, Hemar Teixeira
dc.contributor.referee3.fl_str_mv Chaves, Ana Paula de Araújo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7419789054939681
dc.contributor.author.fl_str_mv Camacho, Adriana Marcela Fonce
contributor_str_mv Rodrigues, Paulo Henrique de Azevedo
Rodrigues, Paulo Henrique de Azevedo
Godinho, Hemar Teixeira
Chaves, Ana Paula de Araújo
dc.subject.por.fl_str_mv Números p-ádicos
Coloração
Contrações
Conjectura de Artin
topic Números p-ádicos
Coloração
Contrações
Conjectura de Artin
P-adic numbers
Coloured variables
Contractions
Artin´s conjecture
MATEMATICA::ALGEBRA
dc.subject.eng.fl_str_mv P-adic numbers
Coloured variables
Contractions
Artin´s conjecture
dc.subject.cnpq.fl_str_mv MATEMATICA::ALGEBRA
description This work is based mainly on the Brunder and Godinho article [2] which shows proof of the conjecture of Artin methods using p-adic, although the conjecture is stated on the real numbers which makes the proof is show an equivalence on the field of the number p-adic method with the help of colored variables ya contraction of variables so as to prove the statement, taking the first level and ensuring a nontrivial solution in the following levels.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-22
dc.date.accessioned.fl_str_mv 2016-03-14T14:08:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/5326
dc.identifier.dark.fl_str_mv ark:/38995/001300000dhn7
identifier_str_mv CAMACHO, A. M. F. Conjectura de Artin: um estudo sobre pares de formas aditivas. 2014. 48 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2014.
ark:/38995/001300000dhn7
url http://repositorio.bc.ufg.br/tede/handle/tede/5326
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -6383368357733941552
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/af21bd03-6761-4bdf-9cb5-a445251c5ec0/download
http://repositorio.bc.ufg.br/tede/bitstreams/c3829e80-4747-4127-bb6a-5b10c450c4c0/download
http://repositorio.bc.ufg.br/tede/bitstreams/5e00cb9f-d26f-4524-add4-974662e0794e/download
http://repositorio.bc.ufg.br/tede/bitstreams/71aaf0c8-07d8-4ea9-96c4-7524eee3697c/download
http://repositorio.bc.ufg.br/tede/bitstreams/25780c5c-d26f-406e-bd1c-2ea87ae4a8ba/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
ef48816a10f2d45f2e2fee2f478e2faf
9da0b6dfac957114c6a7714714b86306
a14522ebe9ae77cf599946d25752f8b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172643280650240