Proximal point methods for multiobjective optimization in riemannian manifolds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000003bk3 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9410 |
Resumo: | In this work, two different proximal-type methods are investigated in the Riemannian context, namely, an exact and an inexact version. Two strategies were used to analyze these methods. For the exact version, we used a direct approach by investigating the regularized problem, not considering any convexity assumption over the constraint sets, that determine the vectorial improvement steps, which replaces the classical approach via scalarization. To study the inexact version, a definition of the approximate Pareto efficient solution is introduced. For the convex case on Hadamard manifolds, full convergence of both methods to a weak Pareto optimal point is obtained. |
id |
UFG-2_44d9cb1e4c4fe17f7b001d85faadb8f3 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9410 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Bento, Glaydston de Carvalhohttp://lattes.cnpq.br/1089906772427394Bento, Glaydston de CarvalhoOliveira, Paulo RobertoSantos, Paulo Sérgio Marques dosCruz Neto, João Xavier daFerreira, Orizon Pereirahttp://lattes.cnpq.br/9108358595172188Meireles, Lucas Vidal de2019-03-29T13:49:52Z2019-02-26MEIRELES, L. V. Proximal point methods for multiobjective optimization in riemannian manifolds. 2019. 49 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9410ark:/38995/0013000003bk3In this work, two different proximal-type methods are investigated in the Riemannian context, namely, an exact and an inexact version. Two strategies were used to analyze these methods. For the exact version, we used a direct approach by investigating the regularized problem, not considering any convexity assumption over the constraint sets, that determine the vectorial improvement steps, which replaces the classical approach via scalarization. To study the inexact version, a definition of the approximate Pareto efficient solution is introduced. For the convex case on Hadamard manifolds, full convergence of both methods to a weak Pareto optimal point is obtained.Neste trabalho, dois diferentes métodos tipo-proximal são investigados no contexto Riemanniano, uma versão exata e uma inexata. Duas estratégias foram usadas a fim de analisar estes métodos. Para a versão exata, usamos uma abordagem direta investigando o problema regularizado, não considerando qualquer hipótese de convexidade sobre os conjuntos de restrições, que fornece os passos de melhoria vetorial do subproblema proximal, o qual substitui a abordagem clássica via escalarização. Para estudar a versão inexata introduzimos uma definição de solução Pareto eficiente aproximada. No caso convexo, sobre variedades Hadamard, convergência total de ambos os métodos para um ponto Pareto fraco ótimo é obtido.Submitted by Ana Caroline Costa (ana_caroline212@hotmail.com) on 2019-03-28T18:36:51Z No. of bitstreams: 2 Tese - Lucas Vidal de Meireles - 2019.pdf: 1345051 bytes, checksum: 426759fdd43063c99bbba410a09a38b3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-03-29T13:49:52Z (GMT) No. of bitstreams: 2 Tese - Lucas Vidal de Meireles - 2019.pdf: 1345051 bytes, checksum: 426759fdd43063c99bbba410a09a38b3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-03-29T13:49:52Z (GMT). No. of bitstreams: 2 Tese - Lucas Vidal de Meireles - 2019.pdf: 1345051 bytes, checksum: 426759fdd43063c99bbba410a09a38b3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-02-26Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOtimização multiobjetivoCondições de otimalidadeMétodo do ponto proximalSolução aproximadaVariedades riemannianaMultiobjective optimizationOptimality conditionsProximal point methodApproximate solutionRiemannian manifoldsCIENCIAS EXATAS E DA TERRA::MATEMATICAProximal point methods for multiobjective optimization in riemannian manifoldsMétodo do ponto proximal para otimização multiobjetivo em variedades riemannianasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/cce4b6bf-d66c-4665-86f5-12559ac8ac54/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/e9f7bc00-7050-45fb-a298-2c190586c099/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/93ecf4db-7680-4416-a13e-d247e6788637/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/702e2021-6d89-4bd7-9894-91958ff5bc39/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Lucas Vidal de Meireles - 2019.pdfTese - Lucas Vidal de Meireles - 2019.pdfapplication/pdf1345051http://repositorio.bc.ufg.br/tede/bitstreams/ffda144b-ee7c-4421-ae3a-0f119a42dfbd/download426759fdd43063c99bbba410a09a38b3MD55tede/94102019-03-29 10:49:52.442http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9410http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-03-29T13:49:52Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Proximal point methods for multiobjective optimization in riemannian manifolds |
dc.title.alternative.por.fl_str_mv |
Método do ponto proximal para otimização multiobjetivo em variedades riemannianas |
title |
Proximal point methods for multiobjective optimization in riemannian manifolds |
spellingShingle |
Proximal point methods for multiobjective optimization in riemannian manifolds Meireles, Lucas Vidal de Otimização multiobjetivo Condições de otimalidade Método do ponto proximal Solução aproximada Variedades riemanniana Multiobjective optimization Optimality conditions Proximal point method Approximate solution Riemannian manifolds CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Proximal point methods for multiobjective optimization in riemannian manifolds |
title_full |
Proximal point methods for multiobjective optimization in riemannian manifolds |
title_fullStr |
Proximal point methods for multiobjective optimization in riemannian manifolds |
title_full_unstemmed |
Proximal point methods for multiobjective optimization in riemannian manifolds |
title_sort |
Proximal point methods for multiobjective optimization in riemannian manifolds |
author |
Meireles, Lucas Vidal de |
author_facet |
Meireles, Lucas Vidal de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Bento, Glaydston de Carvalho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1089906772427394 |
dc.contributor.referee1.fl_str_mv |
Bento, Glaydston de Carvalho |
dc.contributor.referee2.fl_str_mv |
Oliveira, Paulo Roberto |
dc.contributor.referee3.fl_str_mv |
Santos, Paulo Sérgio Marques dos |
dc.contributor.referee4.fl_str_mv |
Cruz Neto, João Xavier da |
dc.contributor.referee5.fl_str_mv |
Ferreira, Orizon Pereira |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9108358595172188 |
dc.contributor.author.fl_str_mv |
Meireles, Lucas Vidal de |
contributor_str_mv |
Bento, Glaydston de Carvalho Bento, Glaydston de Carvalho Oliveira, Paulo Roberto Santos, Paulo Sérgio Marques dos Cruz Neto, João Xavier da Ferreira, Orizon Pereira |
dc.subject.por.fl_str_mv |
Otimização multiobjetivo Condições de otimalidade Método do ponto proximal Solução aproximada Variedades riemanniana |
topic |
Otimização multiobjetivo Condições de otimalidade Método do ponto proximal Solução aproximada Variedades riemanniana Multiobjective optimization Optimality conditions Proximal point method Approximate solution Riemannian manifolds CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Multiobjective optimization Optimality conditions Proximal point method Approximate solution Riemannian manifolds |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, two different proximal-type methods are investigated in the Riemannian context, namely, an exact and an inexact version. Two strategies were used to analyze these methods. For the exact version, we used a direct approach by investigating the regularized problem, not considering any convexity assumption over the constraint sets, that determine the vectorial improvement steps, which replaces the classical approach via scalarization. To study the inexact version, a definition of the approximate Pareto efficient solution is introduced. For the convex case on Hadamard manifolds, full convergence of both methods to a weak Pareto optimal point is obtained. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-03-29T13:49:52Z |
dc.date.issued.fl_str_mv |
2019-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MEIRELES, L. V. Proximal point methods for multiobjective optimization in riemannian manifolds. 2019. 49 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9410 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000003bk3 |
identifier_str_mv |
MEIRELES, L. V. Proximal point methods for multiobjective optimization in riemannian manifolds. 2019. 49 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000003bk3 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9410 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/cce4b6bf-d66c-4665-86f5-12559ac8ac54/download http://repositorio.bc.ufg.br/tede/bitstreams/e9f7bc00-7050-45fb-a298-2c190586c099/download http://repositorio.bc.ufg.br/tede/bitstreams/93ecf4db-7680-4416-a13e-d247e6788637/download http://repositorio.bc.ufg.br/tede/bitstreams/702e2021-6d89-4bd7-9894-91958ff5bc39/download http://repositorio.bc.ufg.br/tede/bitstreams/ffda144b-ee7c-4421-ae3a-0f119a42dfbd/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 426759fdd43063c99bbba410a09a38b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172544817266688 |