Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores

Detalhes bibliográficos
Autor(a) principal: Siqueira, Rubens Villar
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000014z9
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/5406
Resumo: Climate analysis, whether at global, regional or local level, it has been the subject of research in various fields of earth sciences. Among the climatic parameters, temperature and precipitation have gained importance in recent decades because of significant changes in their magnitudes. Thus, this work performs a detailed analysis of the temperature for the Greater Goiânia, using satellite images to generate surface temperature for the study area, at first, through an analysis between the years 1997 and 2008 and after in about twenty years, periodically every four years, for the years 1997, 2001, 2005, 2009 and 2014. The elaborate maps, besides showing the spatial variation of urban heat islands, show that there was significant changes to the minimum temperature, maximum and average. Between the period 1997 and 2008, the minimum decrease about 1.4°C and maximum jump of 31.2°C to 36.0°C. Test results for the five periods between 1997 and 2014, show that the year 2014 is presented as the hottest in the years studied. Through the resulting maps of this analysis, it can see that the range of temperatures, the difference between the maximum and minimum, grow with the years. An estimated temperature of satellite validation model was performed by direct comparison between the surface temperature and the data of GOIÂNIA weather station belonging to INMET, with differences of 0.7°C to 1.9°C between the temperatures demonstrating the applicability of satellite images to estimate temperatures in areas that do not have a dense meteorological network. The last analysis performed is forecast monthly temperatures for the period between the years 2040-2047, using the method of Holt-Winters. The model used for predicting allowed the computation of the seasonality of the minimum monthly temperatures, average and maximum for the historical period between the years 1970 to 2015. The predicted temperatures renew the expectation of increased minimum temperatures, average and maximum presented by the analysis of Historic data. As shown, in addition to the monthly increases in temperature, the occurrence of these will be situated in the highest classes of about 1.0° C warmer. We can see that, too, after 2000, all temperatures rise significantly, where their amplitudes between the minimum and maximum are located at a higher level than in previous years.
id UFG-2_464f9a88c1260344d358bb417a21239c
oai_identifier_str oai:repositorio.bc.ufg.br:tede/5406
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Ferreira, Nilson Clementinohttp://lattes.cnpq.br/6466969611652630Ferreira, Nilson ClementinoSoares, Alexandre KepplerBoggione, Giovanni de Araújohttp://lattes.cnpq.br/8064559365983144Siqueira, Rubens Villar2016-04-04T11:52:29Z2015-12-03SIQUEIRA, R. V. Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores. 2015. 122 f. Dissertação (Mestrado em Engenharia do Meio Ambiente) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/5406ark:/38995/00130000014z9Climate analysis, whether at global, regional or local level, it has been the subject of research in various fields of earth sciences. Among the climatic parameters, temperature and precipitation have gained importance in recent decades because of significant changes in their magnitudes. Thus, this work performs a detailed analysis of the temperature for the Greater Goiânia, using satellite images to generate surface temperature for the study area, at first, through an analysis between the years 1997 and 2008 and after in about twenty years, periodically every four years, for the years 1997, 2001, 2005, 2009 and 2014. The elaborate maps, besides showing the spatial variation of urban heat islands, show that there was significant changes to the minimum temperature, maximum and average. Between the period 1997 and 2008, the minimum decrease about 1.4°C and maximum jump of 31.2°C to 36.0°C. Test results for the five periods between 1997 and 2014, show that the year 2014 is presented as the hottest in the years studied. Through the resulting maps of this analysis, it can see that the range of temperatures, the difference between the maximum and minimum, grow with the years. An estimated temperature of satellite validation model was performed by direct comparison between the surface temperature and the data of GOIÂNIA weather station belonging to INMET, with differences of 0.7°C to 1.9°C between the temperatures demonstrating the applicability of satellite images to estimate temperatures in areas that do not have a dense meteorological network. The last analysis performed is forecast monthly temperatures for the period between the years 2040-2047, using the method of Holt-Winters. The model used for predicting allowed the computation of the seasonality of the minimum monthly temperatures, average and maximum for the historical period between the years 1970 to 2015. The predicted temperatures renew the expectation of increased minimum temperatures, average and maximum presented by the analysis of Historic data. As shown, in addition to the monthly increases in temperature, the occurrence of these will be situated in the highest classes of about 1.0° C warmer. We can see that, too, after 2000, all temperatures rise significantly, where their amplitudes between the minimum and maximum are located at a higher level than in previous years.A análise do clima, seja em escala global, regional ou local, tem sido objeto de pesquisa em diversas áreas das ciências da terra. Dentre os parâmetros climáticos, a temperatura e a precipitação ganharam importância nas últimas décadas devido as alterações significativas em suas magnitudes. Desta forma, este trabalho executa uma análise particularizada da temperatura para a Região Metropolitana de Goiânia, utilizando imagens de satélites a fim de gerar a temperatura de superfície para a área de estudo, em um primeiro momento, por meio de uma análise entre os anos de 1997 e 2008 e após em cerca de vinte anos, periodicamente a cada quatro anos, para os anos de 1997, 2001, 2005, 2009 e 2014. Os mapas elaborados, além de mostrarem a variação espacial das ilhas de calor urbano, demonstram que houve variações significativas para as temperaturas mínimas, máximas e médias. Entre o período de 1997 e 2008, as mínimas decrescem aproximadamente em 1,4°C e as máximas saltam de 31,2°C para 36,0°C. Os resultados da análise para os cinco períodos entre 1997 e 2014, demonstram que o ano de 2014 se apresentou como o mais quente entre os anos estudados. Por meio dos mapas resultantes desta análise, é possível notar que a amplitude das temperaturas, diferença entre as máximas e mínimas, crescem com o decorrer dos anos. Um modelo de validação das temperaturas estimadas por satélite foi executado por meio da comparação direta entre a temperatura de superfície e os dados da estação meteorológica GOIÂNIA, pertencente ao INMET, apresentando diferenças de 0,7°C a 1,9°C entre as temperaturas, demonstrando a aplicabilidade de imagens de satélite para estimativa de temperaturas em áreas que não dispõem de uma rede meteorológica adensada. A última análise executada trata da previsão de temperaturas mensais para o período entre os anos de 2040 a 2047, utilizando o método de Holt-Winters. O modelo adotado para a previsão permitiu a computação da sazonalidade das temperaturas mensais mínimas, médias e máximas para o período histórico entre os anos de 1970 a 2015. As temperaturas previstas reafirmam a expectativa do aumento das temperaturas mínimas, médias e máximas apresentadas pela análise dos dados históricos. Conforme demonstrado, além dos aumentos nas temperaturas mensais, a ocorrência destas se situará em regiões mais altas, com cerca de 1,0°C mais quentes. Podemos notar que, também, após o ano 2000, todas as temperaturas se elevam de forma significativa, onde suas amplitudes entre as mínimas e máximas se situam em um patamar mais elevado que nos anos anteriores.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-04-01T19:43:27Z No. of bitstreams: 2 Dissertação - Rubens Villar Siqueira - 2015.pdf: 4882241 bytes, checksum: 3f8cb0b344dec7efd60e3c7564ed2c56 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-04-04T11:52:29Z (GMT) No. of bitstreams: 2 Dissertação - Rubens Villar Siqueira - 2015.pdf: 4882241 bytes, checksum: 3f8cb0b344dec7efd60e3c7564ed2c56 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2016-04-04T11:52:29Z (GMT). No. of bitstreams: 2 Dissertação - Rubens Villar Siqueira - 2015.pdf: 4882241 bytes, checksum: 3f8cb0b344dec7efd60e3c7564ed2c56 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-12-03Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia do Meio Ambiente (EEC)UFGBrasilEscola de Engenharia Civil - EEC (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTemperatura de superfícieIlha de calor urbano (ICU)Imagens de satélitesPrevisão de temperaturasSurface temperatureUrban heat island (UHI)Satellite imagesTemperature forecastENGENHARIA CIVIL::ENGENHARIA HIDRAULICAEstimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posterioresEstimated surface temperature in the region in metropolitan Goiânia Landsat images media and temperatures forecast for subsequent periodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis10097020919728748476006006006007240872516263155857548969681814834114-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/58b6e1ec-bdd2-44b7-8381-63a490c1050c/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/1bd1dd9a-9577-4b65-9cbe-8e44e7bdf1be/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://repositorio.bc.ufg.br/tede/bitstreams/97b5c2c7-c7de-4715-843d-8896decf8554/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/9669e505-2410-4bd2-812b-448292d34985/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertação - Rubens Villar Siqueira - 2015.pdfDissertação - Rubens Villar Siqueira - 2015.pdfapplication/pdf4882241http://repositorio.bc.ufg.br/tede/bitstreams/5098ccfc-7358-4580-b103-bf02adc1945a/download3f8cb0b344dec7efd60e3c7564ed2c56MD55tede/54062016-04-04 08:52:29.495http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5406http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-04-04T11:52:29Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
dc.title.alternative.eng.fl_str_mv Estimated surface temperature in the region in metropolitan Goiânia Landsat images media and temperatures forecast for subsequent periods
title Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
spellingShingle Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
Siqueira, Rubens Villar
Temperatura de superfície
Ilha de calor urbano (ICU)
Imagens de satélites
Previsão de temperaturas
Surface temperature
Urban heat island (UHI)
Satellite images
Temperature forecast
ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA
title_short Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
title_full Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
title_fullStr Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
title_full_unstemmed Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
title_sort Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores
author Siqueira, Rubens Villar
author_facet Siqueira, Rubens Villar
author_role author
dc.contributor.advisor1.fl_str_mv Ferreira, Nilson Clementino
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6466969611652630
dc.contributor.referee1.fl_str_mv Ferreira, Nilson Clementino
dc.contributor.referee2.fl_str_mv Soares, Alexandre Keppler
dc.contributor.referee3.fl_str_mv Boggione, Giovanni de Araújo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8064559365983144
dc.contributor.author.fl_str_mv Siqueira, Rubens Villar
contributor_str_mv Ferreira, Nilson Clementino
Ferreira, Nilson Clementino
Soares, Alexandre Keppler
Boggione, Giovanni de Araújo
dc.subject.por.fl_str_mv Temperatura de superfície
Ilha de calor urbano (ICU)
Imagens de satélites
Previsão de temperaturas
topic Temperatura de superfície
Ilha de calor urbano (ICU)
Imagens de satélites
Previsão de temperaturas
Surface temperature
Urban heat island (UHI)
Satellite images
Temperature forecast
ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA
dc.subject.eng.fl_str_mv Surface temperature
Urban heat island (UHI)
Satellite images
Temperature forecast
dc.subject.cnpq.fl_str_mv ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA
description Climate analysis, whether at global, regional or local level, it has been the subject of research in various fields of earth sciences. Among the climatic parameters, temperature and precipitation have gained importance in recent decades because of significant changes in their magnitudes. Thus, this work performs a detailed analysis of the temperature for the Greater Goiânia, using satellite images to generate surface temperature for the study area, at first, through an analysis between the years 1997 and 2008 and after in about twenty years, periodically every four years, for the years 1997, 2001, 2005, 2009 and 2014. The elaborate maps, besides showing the spatial variation of urban heat islands, show that there was significant changes to the minimum temperature, maximum and average. Between the period 1997 and 2008, the minimum decrease about 1.4°C and maximum jump of 31.2°C to 36.0°C. Test results for the five periods between 1997 and 2014, show that the year 2014 is presented as the hottest in the years studied. Through the resulting maps of this analysis, it can see that the range of temperatures, the difference between the maximum and minimum, grow with the years. An estimated temperature of satellite validation model was performed by direct comparison between the surface temperature and the data of GOIÂNIA weather station belonging to INMET, with differences of 0.7°C to 1.9°C between the temperatures demonstrating the applicability of satellite images to estimate temperatures in areas that do not have a dense meteorological network. The last analysis performed is forecast monthly temperatures for the period between the years 2040-2047, using the method of Holt-Winters. The model used for predicting allowed the computation of the seasonality of the minimum monthly temperatures, average and maximum for the historical period between the years 1970 to 2015. The predicted temperatures renew the expectation of increased minimum temperatures, average and maximum presented by the analysis of Historic data. As shown, in addition to the monthly increases in temperature, the occurrence of these will be situated in the highest classes of about 1.0° C warmer. We can see that, too, after 2000, all temperatures rise significantly, where their amplitudes between the minimum and maximum are located at a higher level than in previous years.
publishDate 2015
dc.date.issued.fl_str_mv 2015-12-03
dc.date.accessioned.fl_str_mv 2016-04-04T11:52:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SIQUEIRA, R. V. Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores. 2015. 122 f. Dissertação (Mestrado em Engenharia do Meio Ambiente) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/5406
dc.identifier.dark.fl_str_mv ark:/38995/00130000014z9
identifier_str_mv SIQUEIRA, R. V. Estimativa da temperatura de superfície na região metropolitana de Goiânia por meio de imagens Landsat e previsão de temperaturas para períodos posteriores. 2015. 122 f. Dissertação (Mestrado em Engenharia do Meio Ambiente) - Universidade Federal de Goiás, Goiânia, 2015.
ark:/38995/00130000014z9
url http://repositorio.bc.ufg.br/tede/handle/tede/5406
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1009702091972874847
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 724087251626315585
dc.relation.cnpq.fl_str_mv 7548969681814834114
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia do Meio Ambiente (EEC)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Engenharia Civil - EEC (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/58b6e1ec-bdd2-44b7-8381-63a490c1050c/download
http://repositorio.bc.ufg.br/tede/bitstreams/1bd1dd9a-9577-4b65-9cbe-8e44e7bdf1be/download
http://repositorio.bc.ufg.br/tede/bitstreams/97b5c2c7-c7de-4715-843d-8896decf8554/download
http://repositorio.bc.ufg.br/tede/bitstreams/9669e505-2410-4bd2-812b-448292d34985/download
http://repositorio.bc.ufg.br/tede/bitstreams/5098ccfc-7358-4580-b103-bf02adc1945a/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
ef48816a10f2d45f2e2fee2f478e2faf
9da0b6dfac957114c6a7714714b86306
3f8cb0b344dec7efd60e3c7564ed2c56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172520826896384