RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000008wp3 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11633 |
Resumo: | Orange integral juice and nectar are highly consumed in the world and like any process is subject to production failures, however, with the use of 1H NMR spectroscopy is possible to identify these non-conformities. The present work aims to evaluate the chemical profile and identify chemical markers that can be used to build prediction models to distinguish integral juice from nectar and integral juice and nectar with and without the addition of apple. With the 1H NMR technique, it was possible to identify chemical markers to distinguish orange integral juice and nectar and the same ones with and without the addition of apple. The quantification of these chemical markers was done using Electronic REference To access In vivo Concentrations (ERETIC2), which were sucrose, α-glucose, β-glucose, malic acid, fructose, dimethylproline (DMP), citric acid, alanine, lactate and ethanol. Among these compounds, DMP stands out as a chemical marker for evaluating juices and nectars with and without apple addiction. The Redundancy Analysis (RDA) was of great importance as a filter for verifying the information on the labels of integral juices and nectars, where two samples with possible adulteration of apple addition were identified. With the results of the RDA, prediction models were constructed using the Orthogonal Projections to the Latent Structure (O-PLS) to differentiate integral juice from nectar and integral juice and nectar with and without the addition of apple. The constructed models were able to distinguish the types of drinks, with a Q2 equal to 0.706 for the integral juice and nectar model and Q2 of 0.681 for integral juice and nectar with and without added apple. Using partial least squares regression (PLS), an orange and apple content prediction model was built with good percentage prediction capacity with an R2 of 0.9989. Using the aforementioned tools, it was possible to develop models to support quality control and adulteration of orange integral juices and nectars. |
id |
UFG-2_5c7aa12fb3113e0e86d17f0c2cd9806b |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11633 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Queiroz Júnior, Luiz Henrique Kenghttp://lattes.cnpq.br/5071272851467384Queiroz Júnior, Luiz Henrique KengFerri, Pedro HenriqueColnago, Luiz Albertohttp://lattes.cnpq.br/5167805841798494Wilhelms, Renan Ziemann2021-09-15T11:18:34Z2021-09-15T11:18:34Z2021-01-22WILHELMS, R. Z. RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja. 2021. 79 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11633ark:/38995/0013000008wp3Orange integral juice and nectar are highly consumed in the world and like any process is subject to production failures, however, with the use of 1H NMR spectroscopy is possible to identify these non-conformities. The present work aims to evaluate the chemical profile and identify chemical markers that can be used to build prediction models to distinguish integral juice from nectar and integral juice and nectar with and without the addition of apple. With the 1H NMR technique, it was possible to identify chemical markers to distinguish orange integral juice and nectar and the same ones with and without the addition of apple. The quantification of these chemical markers was done using Electronic REference To access In vivo Concentrations (ERETIC2), which were sucrose, α-glucose, β-glucose, malic acid, fructose, dimethylproline (DMP), citric acid, alanine, lactate and ethanol. Among these compounds, DMP stands out as a chemical marker for evaluating juices and nectars with and without apple addiction. The Redundancy Analysis (RDA) was of great importance as a filter for verifying the information on the labels of integral juices and nectars, where two samples with possible adulteration of apple addition were identified. With the results of the RDA, prediction models were constructed using the Orthogonal Projections to the Latent Structure (O-PLS) to differentiate integral juice from nectar and integral juice and nectar with and without the addition of apple. The constructed models were able to distinguish the types of drinks, with a Q2 equal to 0.706 for the integral juice and nectar model and Q2 of 0.681 for integral juice and nectar with and without added apple. Using partial least squares regression (PLS), an orange and apple content prediction model was built with good percentage prediction capacity with an R2 of 0.9989. Using the aforementioned tools, it was possible to develop models to support quality control and adulteration of orange integral juices and nectars.Os sucos integrais e néctares de laranja são altamente consumidos no mundo e como todo processo está sujeito a falhas de produção, porém com o uso da espectroscopia de RMN de 1H é possível identificar essas não conformidades. O presente trabalho tem como objetivo avaliar o perfil químico e identificar marcadores químicos que podem ser utilizados para construção de modelos de predição para diferenciar suco integral de néctar e suco integral e néctar com e sem adição de maçã. Com a técnica de RMN de 1H foi possível identificar marcadores químicos, para a distinção dos sucos integrais e néctares de laranja e os mesmos com e sem adição de maçã. A quantificação desses marcadores foi feita através do Electronic REference To accessIn vivo Concentrations (ERETIC2), que foram a sacarose, α-glicose, β-glicose, ácido málico, frutose, dimetilprolina (DMP), ácido cítrico, alanina, lactato e etanol. Dentre esses compostos destaca-se a DMP como marcador para avaliar os sucos e néctares com e sem adição de maçã. As Análise de Redundância (RDA) foram de grande importância como um filtro para a verificação das informações dos rótulos dos sucos integrais e néctares, onde foram identificadas duas amostras com possível adulteração de adição de maçã. Com os resultados da RDA foram construídos modelos de predição com uso das Projeções Ortogonais à Estrutura Latente (O-PLS) para diferenciar suco integral de néctar e suco integral e néctar com e sem adição de maçã. Os modelos construídos foram capazes de diferenciar os tipos de bebidas, com um Q2igual a 0,706 para o modelo de suco integral e néctar e Q2 de 0,681 para suco integral e néctar com e sem adição de maçã. Com o uso da Regressão parcial de mínimos quadrados (PLS) foi construído um modelo de predição de teor de laranja e maçã com boa capacidade de predição do percentual com um R2 de 0,9989. Com o uso das ferramentas citadas foi possível elaborar modelos para o suporte ao controle de qualidade e adulterações dos sucos integrais e néctares de laranja.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2021-09-14T16:39:10Z No. of bitstreams: 2 Dissertação - Renan Ziemann Wilhelms - 2021.pdf: 5898131 bytes, checksum: 9d28f3a078782dc8b50a687552b73023 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-09-15T11:18:34Z (GMT) No. of bitstreams: 2 Dissertação - Renan Ziemann Wilhelms - 2021.pdf: 5898131 bytes, checksum: 9d28f3a078782dc8b50a687552b73023 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2021-09-15T11:18:34Z (GMT). No. of bitstreams: 2 Dissertação - Renan Ziemann Wilhelms - 2021.pdf: 5898131 bytes, checksum: 9d28f3a078782dc8b50a687552b73023 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-01-22Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Química (IQ)UFGBrasilInstituto de Química - IQ (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRMNSucoNéctarLaranjaO-PLSRDAPLSNMRJuiceNectarO-PLSRDAPLSCIENCIAS EXATAS E DA TERRA::QUIMICARMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranjaNMR allied to statistical methods for quality control orange nectar and integral juiceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis825005005005005002919001reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/514e7ccb-b0ef-45ad-8927-0a9790da52a3/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDissertação - Renan Ziemann Wilhelms - 2021.pdfDissertação - Renan Ziemann Wilhelms - 2021.pdfapplication/pdf5898131http://repositorio.bc.ufg.br/tede/bitstreams/45a67d23-2965-48e1-bd1e-0fb3b49541c4/download9d28f3a078782dc8b50a687552b73023MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/fa4f6dbd-f61d-4cb0-9a0c-22e64a3473a4/download4460e5956bc1d1639be9ae6146a50347MD52tede/116332021-09-15 08:18:35.052http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11633http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-09-15T11:18:35Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
dc.title.alternative.eng.fl_str_mv |
NMR allied to statistical methods for quality control orange nectar and integral juice |
title |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
spellingShingle |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja Wilhelms, Renan Ziemann RMN Suco Néctar Laranja O-PLS RDA PLS NMR Juice Nectar O-PLS RDA PLS CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
title_full |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
title_fullStr |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
title_full_unstemmed |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
title_sort |
RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja |
author |
Wilhelms, Renan Ziemann |
author_facet |
Wilhelms, Renan Ziemann |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Queiroz Júnior, Luiz Henrique Keng |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5071272851467384 |
dc.contributor.referee1.fl_str_mv |
Queiroz Júnior, Luiz Henrique Keng |
dc.contributor.referee2.fl_str_mv |
Ferri, Pedro Henrique |
dc.contributor.referee3.fl_str_mv |
Colnago, Luiz Alberto |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5167805841798494 |
dc.contributor.author.fl_str_mv |
Wilhelms, Renan Ziemann |
contributor_str_mv |
Queiroz Júnior, Luiz Henrique Keng Queiroz Júnior, Luiz Henrique Keng Ferri, Pedro Henrique Colnago, Luiz Alberto |
dc.subject.por.fl_str_mv |
RMN Suco Néctar Laranja O-PLS RDA PLS |
topic |
RMN Suco Néctar Laranja O-PLS RDA PLS NMR Juice Nectar O-PLS RDA PLS CIENCIAS EXATAS E DA TERRA::QUIMICA |
dc.subject.eng.fl_str_mv |
NMR Juice Nectar O-PLS RDA PLS |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
Orange integral juice and nectar are highly consumed in the world and like any process is subject to production failures, however, with the use of 1H NMR spectroscopy is possible to identify these non-conformities. The present work aims to evaluate the chemical profile and identify chemical markers that can be used to build prediction models to distinguish integral juice from nectar and integral juice and nectar with and without the addition of apple. With the 1H NMR technique, it was possible to identify chemical markers to distinguish orange integral juice and nectar and the same ones with and without the addition of apple. The quantification of these chemical markers was done using Electronic REference To access In vivo Concentrations (ERETIC2), which were sucrose, α-glucose, β-glucose, malic acid, fructose, dimethylproline (DMP), citric acid, alanine, lactate and ethanol. Among these compounds, DMP stands out as a chemical marker for evaluating juices and nectars with and without apple addiction. The Redundancy Analysis (RDA) was of great importance as a filter for verifying the information on the labels of integral juices and nectars, where two samples with possible adulteration of apple addition were identified. With the results of the RDA, prediction models were constructed using the Orthogonal Projections to the Latent Structure (O-PLS) to differentiate integral juice from nectar and integral juice and nectar with and without the addition of apple. The constructed models were able to distinguish the types of drinks, with a Q2 equal to 0.706 for the integral juice and nectar model and Q2 of 0.681 for integral juice and nectar with and without added apple. Using partial least squares regression (PLS), an orange and apple content prediction model was built with good percentage prediction capacity with an R2 of 0.9989. Using the aforementioned tools, it was possible to develop models to support quality control and adulteration of orange integral juices and nectars. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-09-15T11:18:34Z |
dc.date.available.fl_str_mv |
2021-09-15T11:18:34Z |
dc.date.issued.fl_str_mv |
2021-01-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
WILHELMS, R. Z. RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja. 2021. 79 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11633 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000008wp3 |
identifier_str_mv |
WILHELMS, R. Z. RMN aliada a métodos estatísticos para controle de qualidade de sucos integrais e néctares de laranja. 2021. 79 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/0013000008wp3 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11633 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
82 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 500 |
dc.relation.department.fl_str_mv |
29 |
dc.relation.cnpq.fl_str_mv |
190 |
dc.relation.sponsorship.fl_str_mv |
0 1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Química (IQ) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química - IQ (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/514e7ccb-b0ef-45ad-8927-0a9790da52a3/download http://repositorio.bc.ufg.br/tede/bitstreams/45a67d23-2965-48e1-bd1e-0fb3b49541c4/download http://repositorio.bc.ufg.br/tede/bitstreams/fa4f6dbd-f61d-4cb0-9a0c-22e64a3473a4/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 9d28f3a078782dc8b50a687552b73023 4460e5956bc1d1639be9ae6146a50347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172605355753472 |