Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões

Detalhes bibliográficos
Autor(a) principal: Cappelle, Márcia Rodrigues
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000001x11
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/4475
Resumo: In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles.
id UFG-2_6043acc45208bcf0f9ac0e98b97dd322
oai_identifier_str oai:repositorio.bc.ufg.br:tede/4475
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Barbosa, Rommel Melgaçohttp://lattes.cnpq.br/6228227125338610Barbosa, Rommel MelgaçoAbreu, Nair Maria Maia deSantos, José Plínio de OliveiraLongo, Humberto JoséSilva, Hebert Coelho dahttp://lattes.cnpq.br/4638125536971138Cappelle, Márcia Rodrigues2015-04-30T13:54:17Z2014-10-01CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/4475ark:/38995/0013000001x11In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles.Nesta tese, apresentamos alguns resultados relacionados, principalmente, aos tamanhos de conjuntos independentes maximais em alguns grafos. Mostramos que para inteiros r e D, com r 2 e D 3, há um número finito de grafos conexos de grau mínimo pelo menos 2, grau máximo até D e cintura pelo menos 7 que têm tamanhos de conjuntos independentes maximais de até r tamanhos diferentes. Além disso, provamos outros resultados que restringem os graus de tais grafos e que generalizam resultados já conhecidos sobre grafos bem-cobertos. Foram estudados a estrutura e o reconhecimento dos grafos bem-cobertos G de ordem n(G) sem vértice isolado que têm número de independência n(G)k 2 , para algum inteiro não negativo k. Para k = 1, apresentamos uma descrição estrutural completa destes grafos e para um k geral, porém fixo, descrevemos um algoritmo de complexidade polinomial de tempo para o reconhecimento de tais grafos. Consideramos grafos G sem vértice isolado cuja diferença entre o maior e o menor conjuntos independentes maximais é no máximo k, para algum inteiro k não negativo. Obtivemos um limite superior sobre o número de independência destes grafos. Apresentamos um algoritmo de complexidade polinomial de tempo para reconhecimento de alguns produtos complementares, o qual inclui todos os prismas complementares. Apresentamos também alguns resultados sobre prismas complementares bem-cobertos. Mostramos que se G não é um grafo bem-coberto e seu prisma complementar é bem-coberto, então G tem somente dois tamanhos de conjuntos independentes maximais que são consecutivos. Apresentamos um limite superior para a quantidade de tamanhos de conjuntos independentes maximais em prismas complementares e também outros resultados relacionados à bem-cobertura. Apresentamos um limite inferior para a quantidade de conjuntos independentes maximais de tamanhos diferentes em produtos Cartesianos de caminhos e ciclos.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-04-30T13:50:06Z No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-04-30T13:54:17Z (GMT) No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-04-30T13:54:17Z (GMT). No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-10-01Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/19328/Tese%20-%20M%c3%a1rcia%20Rodrigues%20Cappelle%20Santana%20-%202014.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF/UFMS)UFGBrasilInstituto de Física - IF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoria dos grafosConjuntos independentesGrafos bem-cobertosProdutos complementaresGraph theoryIndependent setsWell-covered graphsComplementary productsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensõesOn graphs having r different sizes of maximal independent sets and some extensionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis5425012756248488080600600600600-40296588536520493063671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/fa424630-dd40-4285-b792-72c9a1419258/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/64243891-e617-4b31-b76d-807b9bf9e64c/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822762http://repositorio.bc.ufg.br/tede/bitstreams/748e537f-b824-42e6-b214-7ad4581d81a9/downloadfda13080e892f3f68def2b8b70227968MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/d88b1661-a569-45e7-bba4-543e628ef083/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Márcia Rodrigues Cappelle Santana - 2014.pdfTese - Márcia Rodrigues Cappelle Santana - 2014.pdfapplication/pdf631835http://repositorio.bc.ufg.br/tede/bitstreams/b3f691b8-7d96-476d-a4d3-a0a88cbb4957/download92e31eb230a1e5640350250db336b352MD55TEXTTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.txtTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.txtExtracted Texttext/plain175836http://repositorio.bc.ufg.br/tede/bitstreams/bfa8bcff-7150-4de0-9f23-1e428dac0403/downloadc70e9b02e394fb63b7a8d017bae7e796MD56THUMBNAILTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.jpgTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.jpgGenerated Thumbnailimage/jpeg3537http://repositorio.bc.ufg.br/tede/bitstreams/9b709a84-2d50-45d4-a6f8-b90ae8d3a6d0/download774b443d0138e69e9264d885066b30c9MD57tede/44752015-05-01 03:01:34.543http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4475http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2015-05-01T06:01:34Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
dc.title.alternative.eng.fl_str_mv On graphs having r different sizes of maximal independent sets and some extensions
title Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
spellingShingle Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
Cappelle, Márcia Rodrigues
Teoria dos grafos
Conjuntos independentes
Grafos bem-cobertos
Produtos complementares
Graph theory
Independent sets
Well-covered graphs
Complementary products
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
title_full Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
title_fullStr Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
title_full_unstemmed Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
title_sort Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
author Cappelle, Márcia Rodrigues
author_facet Cappelle, Márcia Rodrigues
author_role author
dc.contributor.advisor1.fl_str_mv Barbosa, Rommel Melgaço
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6228227125338610
dc.contributor.referee1.fl_str_mv Barbosa, Rommel Melgaço
dc.contributor.referee2.fl_str_mv Abreu, Nair Maria Maia de
dc.contributor.referee3.fl_str_mv Santos, José Plínio de Oliveira
dc.contributor.referee4.fl_str_mv Longo, Humberto José
dc.contributor.referee5.fl_str_mv Silva, Hebert Coelho da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4638125536971138
dc.contributor.author.fl_str_mv Cappelle, Márcia Rodrigues
contributor_str_mv Barbosa, Rommel Melgaço
Barbosa, Rommel Melgaço
Abreu, Nair Maria Maia de
Santos, José Plínio de Oliveira
Longo, Humberto José
Silva, Hebert Coelho da
dc.subject.por.fl_str_mv Teoria dos grafos
Conjuntos independentes
Grafos bem-cobertos
Produtos complementares
topic Teoria dos grafos
Conjuntos independentes
Grafos bem-cobertos
Produtos complementares
Graph theory
Independent sets
Well-covered graphs
Complementary products
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Graph theory
Independent sets
Well-covered graphs
Complementary products
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles.
publishDate 2014
dc.date.issued.fl_str_mv 2014-10-01
dc.date.accessioned.fl_str_mv 2015-04-30T13:54:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/4475
dc.identifier.dark.fl_str_mv ark:/38995/0013000001x11
identifier_str_mv CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014.
ark:/38995/0013000001x11
url http://repositorio.bc.ufg.br/tede/handle/tede/4475
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 5425012756248488080
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4029658853652049306
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF/UFMS)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Física - IF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/fa424630-dd40-4285-b792-72c9a1419258/download
http://repositorio.bc.ufg.br/tede/bitstreams/64243891-e617-4b31-b76d-807b9bf9e64c/download
http://repositorio.bc.ufg.br/tede/bitstreams/748e537f-b824-42e6-b214-7ad4581d81a9/download
http://repositorio.bc.ufg.br/tede/bitstreams/d88b1661-a569-45e7-bba4-543e628ef083/download
http://repositorio.bc.ufg.br/tede/bitstreams/b3f691b8-7d96-476d-a4d3-a0a88cbb4957/download
http://repositorio.bc.ufg.br/tede/bitstreams/bfa8bcff-7150-4de0-9f23-1e428dac0403/download
http://repositorio.bc.ufg.br/tede/bitstreams/9b709a84-2d50-45d4-a6f8-b90ae8d3a6d0/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
fda13080e892f3f68def2b8b70227968
9da0b6dfac957114c6a7714714b86306
92e31eb230a1e5640350250db336b352
c70e9b02e394fb63b7a8d017bae7e796
774b443d0138e69e9264d885066b30c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172529112743936