Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000001x11 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/4475 |
Resumo: | In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles. |
id |
UFG-2_6043acc45208bcf0f9ac0e98b97dd322 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/4475 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Barbosa, Rommel Melgaçohttp://lattes.cnpq.br/6228227125338610Barbosa, Rommel MelgaçoAbreu, Nair Maria Maia deSantos, José Plínio de OliveiraLongo, Humberto JoséSilva, Hebert Coelho dahttp://lattes.cnpq.br/4638125536971138Cappelle, Márcia Rodrigues2015-04-30T13:54:17Z2014-10-01CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/4475ark:/38995/0013000001x11In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles.Nesta tese, apresentamos alguns resultados relacionados, principalmente, aos tamanhos de conjuntos independentes maximais em alguns grafos. Mostramos que para inteiros r e D, com r 2 e D 3, há um número finito de grafos conexos de grau mínimo pelo menos 2, grau máximo até D e cintura pelo menos 7 que têm tamanhos de conjuntos independentes maximais de até r tamanhos diferentes. Além disso, provamos outros resultados que restringem os graus de tais grafos e que generalizam resultados já conhecidos sobre grafos bem-cobertos. Foram estudados a estrutura e o reconhecimento dos grafos bem-cobertos G de ordem n(G) sem vértice isolado que têm número de independência n(G)k 2 , para algum inteiro não negativo k. Para k = 1, apresentamos uma descrição estrutural completa destes grafos e para um k geral, porém fixo, descrevemos um algoritmo de complexidade polinomial de tempo para o reconhecimento de tais grafos. Consideramos grafos G sem vértice isolado cuja diferença entre o maior e o menor conjuntos independentes maximais é no máximo k, para algum inteiro k não negativo. Obtivemos um limite superior sobre o número de independência destes grafos. Apresentamos um algoritmo de complexidade polinomial de tempo para reconhecimento de alguns produtos complementares, o qual inclui todos os prismas complementares. Apresentamos também alguns resultados sobre prismas complementares bem-cobertos. Mostramos que se G não é um grafo bem-coberto e seu prisma complementar é bem-coberto, então G tem somente dois tamanhos de conjuntos independentes maximais que são consecutivos. Apresentamos um limite superior para a quantidade de tamanhos de conjuntos independentes maximais em prismas complementares e também outros resultados relacionados à bem-cobertura. Apresentamos um limite inferior para a quantidade de conjuntos independentes maximais de tamanhos diferentes em produtos Cartesianos de caminhos e ciclos.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-04-30T13:50:06Z No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-04-30T13:54:17Z (GMT) No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-04-30T13:54:17Z (GMT). No. of bitstreams: 2 Tese - Márcia Rodrigues Cappelle Santana - 2014.pdf: 631835 bytes, checksum: 92e31eb230a1e5640350250db336b352 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-10-01Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/19328/Tese%20-%20M%c3%a1rcia%20Rodrigues%20Cappelle%20Santana%20-%202014.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF/UFMS)UFGBrasilInstituto de Física - IF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoria dos grafosConjuntos independentesGrafos bem-cobertosProdutos complementaresGraph theoryIndependent setsWell-covered graphsComplementary productsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensõesOn graphs having r different sizes of maximal independent sets and some extensionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis5425012756248488080600600600600-40296588536520493063671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/fa424630-dd40-4285-b792-72c9a1419258/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/64243891-e617-4b31-b76d-807b9bf9e64c/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822762http://repositorio.bc.ufg.br/tede/bitstreams/748e537f-b824-42e6-b214-7ad4581d81a9/downloadfda13080e892f3f68def2b8b70227968MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/d88b1661-a569-45e7-bba4-543e628ef083/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Márcia Rodrigues Cappelle Santana - 2014.pdfTese - Márcia Rodrigues Cappelle Santana - 2014.pdfapplication/pdf631835http://repositorio.bc.ufg.br/tede/bitstreams/b3f691b8-7d96-476d-a4d3-a0a88cbb4957/download92e31eb230a1e5640350250db336b352MD55TEXTTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.txtTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.txtExtracted Texttext/plain175836http://repositorio.bc.ufg.br/tede/bitstreams/bfa8bcff-7150-4de0-9f23-1e428dac0403/downloadc70e9b02e394fb63b7a8d017bae7e796MD56THUMBNAILTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.jpgTese - Márcia Rodrigues Cappelle Santana - 2014.pdf.jpgGenerated Thumbnailimage/jpeg3537http://repositorio.bc.ufg.br/tede/bitstreams/9b709a84-2d50-45d4-a6f8-b90ae8d3a6d0/download774b443d0138e69e9264d885066b30c9MD57tede/44752015-05-01 03:01:34.543http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4475http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2015-05-01T06:01:34Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
dc.title.alternative.eng.fl_str_mv |
On graphs having r different sizes of maximal independent sets and some extensions |
title |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
spellingShingle |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões Cappelle, Márcia Rodrigues Teoria dos grafos Conjuntos independentes Grafos bem-cobertos Produtos complementares Graph theory Independent sets Well-covered graphs Complementary products CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
title_full |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
title_fullStr |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
title_full_unstemmed |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
title_sort |
Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões |
author |
Cappelle, Márcia Rodrigues |
author_facet |
Cappelle, Márcia Rodrigues |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Barbosa, Rommel Melgaço |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6228227125338610 |
dc.contributor.referee1.fl_str_mv |
Barbosa, Rommel Melgaço |
dc.contributor.referee2.fl_str_mv |
Abreu, Nair Maria Maia de |
dc.contributor.referee3.fl_str_mv |
Santos, José Plínio de Oliveira |
dc.contributor.referee4.fl_str_mv |
Longo, Humberto José |
dc.contributor.referee5.fl_str_mv |
Silva, Hebert Coelho da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4638125536971138 |
dc.contributor.author.fl_str_mv |
Cappelle, Márcia Rodrigues |
contributor_str_mv |
Barbosa, Rommel Melgaço Barbosa, Rommel Melgaço Abreu, Nair Maria Maia de Santos, José Plínio de Oliveira Longo, Humberto José Silva, Hebert Coelho da |
dc.subject.por.fl_str_mv |
Teoria dos grafos Conjuntos independentes Grafos bem-cobertos Produtos complementares |
topic |
Teoria dos grafos Conjuntos independentes Grafos bem-cobertos Produtos complementares Graph theory Independent sets Well-covered graphs Complementary products CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Graph theory Independent sets Well-covered graphs Complementary products |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
In this thesis, we present some results concerning about the sizes of maximal independent sets in graphs. We prove that for integers r and D with r 2 and D 3, there are only finitely many connected graphs of minimum degree at least 2, maximum degree at most D, and girth at least 7 that have maximal independent sets of at most r different sizes. Furthermore, we prove several results restricting the degrees of such graphs. These contributions generalize known results on well-covered graphs. We study the structure and recognition of the well-covered graphs G with order n(G) without an isolated vertex that have independence number n(G)k 2 for some non-negative integer k. For k = 1, we give a complete structural description of these graphs, and for a general but fixed k, we describe a polynomial time recognition algorithm. We consider graphs G without an isolated vertex for which the independence number a(G) and the independent domination number i(G) satisfy a(G) i(G) k for some non-negative integer k. We obtain a upper bound on the independence number in these graphs. We present a polynomial algorithm to recognize some complementary products, which includes all complementary prisms. Also, we present results on well-covered complementary prisms. We show that if G is not well-covered and its complementary prism is well-covered, then G has only two consecutive sizes of maximal independent sets. We present an upper bound for the quantity of sizes of maximal independent sets in complementary prisms and other wellcovered concerning results. We present a lower bound for the quantity of different sizes of maximal independent sets in Cartesian products of paths and cycles. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-10-01 |
dc.date.accessioned.fl_str_mv |
2015-04-30T13:54:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/4475 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000001x11 |
identifier_str_mv |
CAPPELLE, M. R. Sobre grafos com r tamanhos diferentes de conjuntos independentes maximais e algumas extensões. 2014. 86 f. Tese (Doutorado em Ciência da Computação em Rede) - Universidade Federal de Goiás, Goiânia, 2014. ark:/38995/0013000001x11 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/4475 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
5425012756248488080 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4029658853652049306 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF/UFMS) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Física - IF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/fa424630-dd40-4285-b792-72c9a1419258/download http://repositorio.bc.ufg.br/tede/bitstreams/64243891-e617-4b31-b76d-807b9bf9e64c/download http://repositorio.bc.ufg.br/tede/bitstreams/748e537f-b824-42e6-b214-7ad4581d81a9/download http://repositorio.bc.ufg.br/tede/bitstreams/d88b1661-a569-45e7-bba4-543e628ef083/download http://repositorio.bc.ufg.br/tede/bitstreams/b3f691b8-7d96-476d-a4d3-a0a88cbb4957/download http://repositorio.bc.ufg.br/tede/bitstreams/bfa8bcff-7150-4de0-9f23-1e428dac0403/download http://repositorio.bc.ufg.br/tede/bitstreams/9b709a84-2d50-45d4-a6f8-b90ae8d3a6d0/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f fda13080e892f3f68def2b8b70227968 9da0b6dfac957114c6a7714714b86306 92e31eb230a1e5640350250db336b352 c70e9b02e394fb63b7a8d017bae7e796 774b443d0138e69e9264d885066b30c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172529112743936 |