Variedades de Einstein e Ricci solitons com estrutura de produto torcido

Detalhes bibliográficos
Autor(a) principal: Sousa, Márcio Lemes de
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000005vjc
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/4958
Resumo: In this thesis, primarily, we studied warped products semi-Riemannian Einstein manifolds. We considered the case in that the base is conformal to an n-dimensional pseudo- Euclidean space and invariant under the action of an (n 1)-dimensional translation group. We constructed new examples of Einstein warped products with zero Ricci curvature when the fiber is Ricci-flat. In particular, we obtain explicit solutions, in the case vacuum, for Einstein field equation. Furthermore, we consider M = B f F warped product gradient Ricci solitons. We proved that the potential function depends only on the base and the fiber F is necessarily Einstein manifold. We provide all such solutions in the case of steady gradient Ricci solitons when the base is conformal to an n-dimensional pseudo-Euclidean space, invariant under the action of an (n1)-dimensional translation group, and the fiber F is Ricci-flat.
id UFG-2_6a2e2bef89baabcb01954e2e88d641a1
oai_identifier_str oai:repositorio.bc.ufg.br:tede/4958
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da SilvaFerraioli, Diego CatalanoQiaoling, WangCorro, Armando Mauro VasquezAdriano, Levi Rosahttp://lattes.cnpq.br/1534708250926451Sousa, Márcio Lemes de2015-11-30T07:35:41Z2015-07-03SOUSA, Márcio Lemes de. Variedades de Einstein e Ricci solitons com estrutura de produto torcido. 2015. 63 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4958ark:/38995/0013000005vjcIn this thesis, primarily, we studied warped products semi-Riemannian Einstein manifolds. We considered the case in that the base is conformal to an n-dimensional pseudo- Euclidean space and invariant under the action of an (n 1)-dimensional translation group. We constructed new examples of Einstein warped products with zero Ricci curvature when the fiber is Ricci-flat. In particular, we obtain explicit solutions, in the case vacuum, for Einstein field equation. Furthermore, we consider M = B f F warped product gradient Ricci solitons. We proved that the potential function depends only on the base and the fiber F is necessarily Einstein manifold. We provide all such solutions in the case of steady gradient Ricci solitons when the base is conformal to an n-dimensional pseudo-Euclidean space, invariant under the action of an (n1)-dimensional translation group, and the fiber F is Ricci-flat.Nesta tese, primeiramente, estudamos variedades produto torcido semi-Riemannianas de Einstein, considerando-se o caso em que a base é conforme ao espaço pseudo- Euclidiano n -dimensional e invariante sob a ação de um grupo de translações (n1)-dimensional. Construímos novos exemplos de métricas produto torcido Einstein com curvatura de Ricci zero quando a fibra é Ricci -flat. Em particular, obtemos soluções explícitas, no caso de vácuo, para a equação de campo de Einstein. Em seguida, provamos que quando a variedade M = B f F é um Ricci soliton gradiente a função potencial depende apenas da base e a fibra F é necessariamente uma variedade de Einstein. Fornecemos todas as soluções, no caso de Ricci soliton gradiente steady, quando a base é conforme ao espaço pseudo- Euclidiano n -dimensional, invariante sob a ação de um grupo translações (n1) - dimensional, e a fibra F é Ricci -flat.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-30T07:33:27Z No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-30T07:35:41Z (GMT) No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-11-30T07:35:41Z (GMT). No. of bitstreams: 2 Tese - Márcio Lemes de Sousa - 2015.pdf: 2626758 bytes, checksum: 1e9e1b9d216bad33d6b5919afa54a4e4 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-07-03Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessProduto torcidoVariedades de EinsteinRicci soliton gradienteWarped productEinstein manifoldsGradient ricci solitonCIENCIAS EXATAS E DA TERRA::MATEMATICAVariedades de Einstein e Ricci solitons com estrutura de produto torcidoEinstein manifolds and Ricci solitons with warped product structureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-70908234179844016942075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/f13bf308-c52a-490b-a64c-6a6d8261e490/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/ef371546-b647-420b-ad05-1d1129c18a56/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821468http://repositorio.bc.ufg.br/tede/bitstreams/1dc1562b-2c6c-4218-b831-12171047632b/downloadae2fe251842ade1134c5d9bb99b6eefeMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/e807b73b-46f9-42cb-b5b2-dacbf732d6c1/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Márcio Lemes de Sousa - 2015.pdfTese - Márcio Lemes de Sousa - 2015.pdfapplication/pdf2626758http://repositorio.bc.ufg.br/tede/bitstreams/36e887f6-bf97-403d-bf24-25c8ebd569c2/download1e9e1b9d216bad33d6b5919afa54a4e4MD55tede/49582015-11-30 05:35:41.944http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4958http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2015-11-30T07:35:41Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Variedades de Einstein e Ricci solitons com estrutura de produto torcido
dc.title.alternative.eng.fl_str_mv Einstein manifolds and Ricci solitons with warped product structure
title Variedades de Einstein e Ricci solitons com estrutura de produto torcido
spellingShingle Variedades de Einstein e Ricci solitons com estrutura de produto torcido
Sousa, Márcio Lemes de
Produto torcido
Variedades de Einstein
Ricci soliton gradiente
Warped product
Einstein manifolds
Gradient ricci soliton
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Variedades de Einstein e Ricci solitons com estrutura de produto torcido
title_full Variedades de Einstein e Ricci solitons com estrutura de produto torcido
title_fullStr Variedades de Einstein e Ricci solitons com estrutura de produto torcido
title_full_unstemmed Variedades de Einstein e Ricci solitons com estrutura de produto torcido
title_sort Variedades de Einstein e Ricci solitons com estrutura de produto torcido
author Sousa, Márcio Lemes de
author_facet Sousa, Márcio Lemes de
author_role author
dc.contributor.advisor1.fl_str_mv Pina, Romildo da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2675728978857991
dc.contributor.referee1.fl_str_mv Pina, Romildo da Silva
dc.contributor.referee2.fl_str_mv Ferraioli, Diego Catalano
dc.contributor.referee3.fl_str_mv Qiaoling, Wang
dc.contributor.referee4.fl_str_mv Corro, Armando Mauro Vasquez
dc.contributor.referee5.fl_str_mv Adriano, Levi Rosa
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1534708250926451
dc.contributor.author.fl_str_mv Sousa, Márcio Lemes de
contributor_str_mv Pina, Romildo da Silva
Pina, Romildo da Silva
Ferraioli, Diego Catalano
Qiaoling, Wang
Corro, Armando Mauro Vasquez
Adriano, Levi Rosa
dc.subject.por.fl_str_mv Produto torcido
Variedades de Einstein
Ricci soliton gradiente
topic Produto torcido
Variedades de Einstein
Ricci soliton gradiente
Warped product
Einstein manifolds
Gradient ricci soliton
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Warped product
Einstein manifolds
Gradient ricci soliton
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this thesis, primarily, we studied warped products semi-Riemannian Einstein manifolds. We considered the case in that the base is conformal to an n-dimensional pseudo- Euclidean space and invariant under the action of an (n 1)-dimensional translation group. We constructed new examples of Einstein warped products with zero Ricci curvature when the fiber is Ricci-flat. In particular, we obtain explicit solutions, in the case vacuum, for Einstein field equation. Furthermore, we consider M = B f F warped product gradient Ricci solitons. We proved that the potential function depends only on the base and the fiber F is necessarily Einstein manifold. We provide all such solutions in the case of steady gradient Ricci solitons when the base is conformal to an n-dimensional pseudo-Euclidean space, invariant under the action of an (n1)-dimensional translation group, and the fiber F is Ricci-flat.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-11-30T07:35:41Z
dc.date.issued.fl_str_mv 2015-07-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, Márcio Lemes de. Variedades de Einstein e Ricci solitons com estrutura de produto torcido. 2015. 63 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/4958
dc.identifier.dark.fl_str_mv ark:/38995/0013000005vjc
identifier_str_mv SOUSA, Márcio Lemes de. Variedades de Einstein e Ricci solitons com estrutura de produto torcido. 2015. 63 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.
ark:/38995/0013000005vjc
url http://repositorio.bc.ufg.br/tede/handle/tede/4958
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/f13bf308-c52a-490b-a64c-6a6d8261e490/download
http://repositorio.bc.ufg.br/tede/bitstreams/ef371546-b647-420b-ad05-1d1129c18a56/download
http://repositorio.bc.ufg.br/tede/bitstreams/1dc1562b-2c6c-4218-b831-12171047632b/download
http://repositorio.bc.ufg.br/tede/bitstreams/e807b73b-46f9-42cb-b5b2-dacbf732d6c1/download
http://repositorio.bc.ufg.br/tede/bitstreams/36e887f6-bf97-403d-bf24-25c8ebd569c2/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
ae2fe251842ade1134c5d9bb99b6eefe
9da0b6dfac957114c6a7714714b86306
1e9e1b9d216bad33d6b5919afa54a4e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172571852701696