Variedades de Einstein e Ricci solitons

Detalhes bibliográficos
Autor(a) principal: Bezerra, Tatiana Pires Fleury
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000907b
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9485
Resumo: In this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steady
id UFG-2_afd030652991b177fe60f96cb31ccf8e
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9485
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da SilvaFerraioli, Diego CatalanoRoitman, PedroLeandro Neto, BeneditoAdriano, Levi Rosahttp://lattes.cnpq.br/5949035848303360Bezerra, Tatiana Pires Fleury2019-04-12T13:14:10Z2019-03-27BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9485ark:/38995/001300000907bIn this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steadyNeste trabalho, provamos que todas as métricas conformes ao espaço pseudo-Euclidiano ( , ), invariantes pela ação de um grupo de translação ( -1)-dimensional e rotação são gradiente quasi Ricci soliton. Provamos também que todas as métricas conformes a = ( , ̅) , invariante por translação e Ricci flat, são gradiente quasi Ricci solitons. Classificamos todas as variedades de Einstein do tipo = ( , ̅) , onde ̅ , invariantes pela ação do grupo de translação ( -1)-dimensional e Ricci flat com . Se é um gradiente Ricci soliton do tipo = ( , ̅) e a fibra é Ricci flat então é steady e exibimos todas as soluções. Finalmente provamos que se o produto torcido = ( , ̅) for um gradiente Ricci soliton com Ricci flat, e além disso, então é steady.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-12T13:13:19Z No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-12T13:14:10Z (GMT) No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-12T13:14:10Z (GMT). No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-27Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGradiente Ricci solitonGradiente quasi Ricci solitonVariedade de EinsteinProduto torcidoGradient Ricci solitonGradient Ricci almost solitonEinstein manifoldsWarpedGEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIALVariedades de Einstein e Ricci solitonsClasses of generalized Weingarten hypersurfaces in the Euclidean spaceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-8397952787536604826-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/957e3c01-b173-45d1-8713-8806baf7caad/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/5dd380bd-3e6f-44b7-8ea1-0982d4982492/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/cf1fe5df-80ae-4595-8877-c5ee6b0a8df3/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/60654603-563c-4d17-90ab-4a517771f293/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Tatiana Pires Fleury Bezerra - 2019.pdfTese - Tatiana Pires Fleury Bezerra - 2019.pdfapplication/pdf3056521http://repositorio.bc.ufg.br/tede/bitstreams/a6f90052-0bf9-4647-8fd5-46883089918a/downloadc517193509fd9456bffccd2d9ec333eeMD55tede/94852019-04-12 10:14:10.091http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9485http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-12T13:14:10Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Variedades de Einstein e Ricci solitons
dc.title.alternative.eng.fl_str_mv Classes of generalized Weingarten hypersurfaces in the Euclidean space
title Variedades de Einstein e Ricci solitons
spellingShingle Variedades de Einstein e Ricci solitons
Bezerra, Tatiana Pires Fleury
Gradiente Ricci soliton
Gradiente quasi Ricci soliton
Variedade de Einstein
Produto torcido
Gradient Ricci soliton
Gradient Ricci almost soliton
Einstein manifolds
Warped
GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL
title_short Variedades de Einstein e Ricci solitons
title_full Variedades de Einstein e Ricci solitons
title_fullStr Variedades de Einstein e Ricci solitons
title_full_unstemmed Variedades de Einstein e Ricci solitons
title_sort Variedades de Einstein e Ricci solitons
author Bezerra, Tatiana Pires Fleury
author_facet Bezerra, Tatiana Pires Fleury
author_role author
dc.contributor.advisor1.fl_str_mv Pina, Romildo da Silva
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2675728978857991
dc.contributor.referee1.fl_str_mv Pina, Romildo da Silva
dc.contributor.referee2.fl_str_mv Ferraioli, Diego Catalano
dc.contributor.referee3.fl_str_mv Roitman, Pedro
dc.contributor.referee4.fl_str_mv Leandro Neto, Benedito
dc.contributor.referee5.fl_str_mv Adriano, Levi Rosa
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5949035848303360
dc.contributor.author.fl_str_mv Bezerra, Tatiana Pires Fleury
contributor_str_mv Pina, Romildo da Silva
Pina, Romildo da Silva
Ferraioli, Diego Catalano
Roitman, Pedro
Leandro Neto, Benedito
Adriano, Levi Rosa
dc.subject.por.fl_str_mv Gradiente Ricci soliton
Gradiente quasi Ricci soliton
Variedade de Einstein
Produto torcido
topic Gradiente Ricci soliton
Gradiente quasi Ricci soliton
Variedade de Einstein
Produto torcido
Gradient Ricci soliton
Gradient Ricci almost soliton
Einstein manifolds
Warped
GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL
dc.subject.eng.fl_str_mv Gradient Ricci soliton
Gradient Ricci almost soliton
Einstein manifolds
Warped
dc.subject.cnpq.fl_str_mv GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL
description In this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steady
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-12T13:14:10Z
dc.date.issued.fl_str_mv 2019-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9485
dc.identifier.dark.fl_str_mv ark:/38995/001300000907b
identifier_str_mv BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/001300000907b
url http://repositorio.bc.ufg.br/tede/handle/tede/9485
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -8397952787536604826
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/957e3c01-b173-45d1-8713-8806baf7caad/download
http://repositorio.bc.ufg.br/tede/bitstreams/5dd380bd-3e6f-44b7-8ea1-0982d4982492/download
http://repositorio.bc.ufg.br/tede/bitstreams/cf1fe5df-80ae-4595-8877-c5ee6b0a8df3/download
http://repositorio.bc.ufg.br/tede/bitstreams/60654603-563c-4d17-90ab-4a517771f293/download
http://repositorio.bc.ufg.br/tede/bitstreams/a6f90052-0bf9-4647-8fd5-46883089918a/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
c517193509fd9456bffccd2d9ec333ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172605878992896