Variedades de Einstein e Ricci solitons
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000907b |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9485 |
Resumo: | In this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steady |
id |
UFG-2_afd030652991b177fe60f96cb31ccf8e |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9485 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Pina, Romildo da Silvahttp://lattes.cnpq.br/2675728978857991Pina, Romildo da SilvaFerraioli, Diego CatalanoRoitman, PedroLeandro Neto, BeneditoAdriano, Levi Rosahttp://lattes.cnpq.br/5949035848303360Bezerra, Tatiana Pires Fleury2019-04-12T13:14:10Z2019-03-27BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/9485ark:/38995/001300000907bIn this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steadyNeste trabalho, provamos que todas as métricas conformes ao espaço pseudo-Euclidiano ( , ), invariantes pela ação de um grupo de translação ( -1)-dimensional e rotação são gradiente quasi Ricci soliton. Provamos também que todas as métricas conformes a = ( , ̅) , invariante por translação e Ricci flat, são gradiente quasi Ricci solitons. Classificamos todas as variedades de Einstein do tipo = ( , ̅) , onde ̅ , invariantes pela ação do grupo de translação ( -1)-dimensional e Ricci flat com . Se é um gradiente Ricci soliton do tipo = ( , ̅) e a fibra é Ricci flat então é steady e exibimos todas as soluções. Finalmente provamos que se o produto torcido = ( , ̅) for um gradiente Ricci soliton com Ricci flat, e além disso, então é steady.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-12T13:13:19Z No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-04-12T13:14:10Z (GMT) No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-04-12T13:14:10Z (GMT). No. of bitstreams: 2 Tese - Tatiana Pires Fleury Bezerra - 2019.pdf: 3056521 bytes, checksum: c517193509fd9456bffccd2d9ec333ee (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-03-27Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGradiente Ricci solitonGradiente quasi Ricci solitonVariedade de EinsteinProduto torcidoGradient Ricci solitonGradient Ricci almost solitonEinstein manifoldsWarpedGEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIALVariedades de Einstein e Ricci solitonsClasses of generalized Weingarten hypersurfaces in the Euclidean spaceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-8397952787536604826-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/957e3c01-b173-45d1-8713-8806baf7caad/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/5dd380bd-3e6f-44b7-8ea1-0982d4982492/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/cf1fe5df-80ae-4595-8877-c5ee6b0a8df3/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/60654603-563c-4d17-90ab-4a517771f293/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Tatiana Pires Fleury Bezerra - 2019.pdfTese - Tatiana Pires Fleury Bezerra - 2019.pdfapplication/pdf3056521http://repositorio.bc.ufg.br/tede/bitstreams/a6f90052-0bf9-4647-8fd5-46883089918a/downloadc517193509fd9456bffccd2d9ec333eeMD55tede/94852019-04-12 10:14:10.091http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9485http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-04-12T13:14:10Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Variedades de Einstein e Ricci solitons |
dc.title.alternative.eng.fl_str_mv |
Classes of generalized Weingarten hypersurfaces in the Euclidean space |
title |
Variedades de Einstein e Ricci solitons |
spellingShingle |
Variedades de Einstein e Ricci solitons Bezerra, Tatiana Pires Fleury Gradiente Ricci soliton Gradiente quasi Ricci soliton Variedade de Einstein Produto torcido Gradient Ricci soliton Gradient Ricci almost soliton Einstein manifolds Warped GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL |
title_short |
Variedades de Einstein e Ricci solitons |
title_full |
Variedades de Einstein e Ricci solitons |
title_fullStr |
Variedades de Einstein e Ricci solitons |
title_full_unstemmed |
Variedades de Einstein e Ricci solitons |
title_sort |
Variedades de Einstein e Ricci solitons |
author |
Bezerra, Tatiana Pires Fleury |
author_facet |
Bezerra, Tatiana Pires Fleury |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2675728978857991 |
dc.contributor.referee1.fl_str_mv |
Pina, Romildo da Silva |
dc.contributor.referee2.fl_str_mv |
Ferraioli, Diego Catalano |
dc.contributor.referee3.fl_str_mv |
Roitman, Pedro |
dc.contributor.referee4.fl_str_mv |
Leandro Neto, Benedito |
dc.contributor.referee5.fl_str_mv |
Adriano, Levi Rosa |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5949035848303360 |
dc.contributor.author.fl_str_mv |
Bezerra, Tatiana Pires Fleury |
contributor_str_mv |
Pina, Romildo da Silva Pina, Romildo da Silva Ferraioli, Diego Catalano Roitman, Pedro Leandro Neto, Benedito Adriano, Levi Rosa |
dc.subject.por.fl_str_mv |
Gradiente Ricci soliton Gradiente quasi Ricci soliton Variedade de Einstein Produto torcido |
topic |
Gradiente Ricci soliton Gradiente quasi Ricci soliton Variedade de Einstein Produto torcido Gradient Ricci soliton Gradient Ricci almost soliton Einstein manifolds Warped GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL |
dc.subject.eng.fl_str_mv |
Gradient Ricci soliton Gradient Ricci almost soliton Einstein manifolds Warped |
dc.subject.cnpq.fl_str_mv |
GEOMETRIA E TOPOLOGIA::GEOMETRIA DIFERENCIAL |
description |
In this work, we prove that all metrics conformal to the pseudo-Euclidean space ( , ), invariant under the action ( -1)-dimensional translation group and also invariants by a pseudo orthogonal group action are gradient Ricci almost solitons. We also prove that all metrics conformal to = ( , ̅) , invariant under the action ( -1)-dimensional translation group and Ricci flat are gradient Ricci almost soliton. We classify all Einstein manifolds of the type = ( , ̅) , where ̅ , invariant under the action ( -1)-dimensional translation group and Ricci flat with . If is gradiente Ricci soliton of type = ( , ̅) and the fiber is Ricci flat then is teady and we provide all such solutions. Finally we prove that if the warped product = ( , ̅) is a gradient Ricci soliton with Ricci flat, and further, then is steady |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-04-12T13:14:10Z |
dc.date.issued.fl_str_mv |
2019-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9485 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000907b |
identifier_str_mv |
BEZERRA, Tatiana Pires Fleury. Variedades de Einstein e Ricci solitons. 2019. 82 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/001300000907b |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9485 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-8397952787536604826 |
dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/957e3c01-b173-45d1-8713-8806baf7caad/download http://repositorio.bc.ufg.br/tede/bitstreams/5dd380bd-3e6f-44b7-8ea1-0982d4982492/download http://repositorio.bc.ufg.br/tede/bitstreams/cf1fe5df-80ae-4595-8877-c5ee6b0a8df3/download http://repositorio.bc.ufg.br/tede/bitstreams/60654603-563c-4d17-90ab-4a517771f293/download http://repositorio.bc.ufg.br/tede/bitstreams/a6f90052-0bf9-4647-8fd5-46883089918a/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e c517193509fd9456bffccd2d9ec333ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172605878992896 |